BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 20647612)

  • 1. The sensitivity of focused electrical impedance measurements.
    Islam N; Siddique-e Rabbani K; Wilson A
    Physiol Meas; 2010 Aug; 31(8):S97-109. PubMed ID: 20647612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement and modelling the sensitivity of tetrapolar transfer impedance measurements.
    Naydenova E; Cavendish S; Wilson AJ
    Med Eng Phys; 2016 Oct; 38(10):1090-9. PubMed ID: 27475783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new four-electrode Focused Impedance Measurement (FIM) system for physiological study.
    Rabbani KS; Karal MA
    Ann Biomed Eng; 2008 Jun; 36(6):1072-7. PubMed ID: 18347985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison study of electrodes for neonate electrical impedance tomography.
    Rahal M; Khor JM; Demosthenous A; Tizzard A; Bayford R
    Physiol Meas; 2009 Jun; 30(6):S73-84. PubMed ID: 19491443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the sensitivity and frequency characteristics of coplanar electrical cell-substrate impedance sensors.
    Wang L; Wang H; Wang L; Mitchelson K; Yu Z; Cheng J
    Biosens Bioelectron; 2008 Sep; 24(1):14-21. PubMed ID: 18511255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The contribution of the lungs to thoracic impedance measurements: a simulation study based on a high resolution finite difference model.
    Yang F; Patterson RP
    Physiol Meas; 2007 Jul; 28(7):S153-61. PubMed ID: 17664633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical sensitivity modeling for the detection of skin tumors by using tetrapolar probe.
    Ramos A; Bertemes-Filho P
    Electromagn Biol Med; 2011 Dec; 30(4):235-45. PubMed ID: 22047461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of 1-lead and 2-lead electrode patterns in electrical impedance endotomography.
    Fournier-Desseux A; Jossinet J
    Physiol Meas; 2005 Aug; 26(4):337-49. PubMed ID: 15886430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of electrode geometry and cell location on single-cell impedance measurement.
    Wang JW; Wang MH; Jang LS
    Biosens Bioelectron; 2010 Feb; 25(6):1271-6. PubMed ID: 19926465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new geometric factor for in situ resistivity measurement using four slender cylindrical electrodes.
    Chong CE; Tan YL
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):594-602. PubMed ID: 18269995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical impedance spectroscopy measurements using a four-electrode configuration improve on-line monitoring of cell concentration in adherent animal cell cultures.
    Sarró E; Lecina M; Fontova A; Solà C; Gòdia F; Cairó JJ; Bragós R
    Biosens Bioelectron; 2012 Jan; 31(1):257-63. PubMed ID: 22061268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimum design of electrode structure and parameters in electrical impedance tomography.
    Yan W; Hong S; Chaoshi R
    Physiol Meas; 2006 Mar; 27(3):291-306. PubMed ID: 16462015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the optimum level of electrode placement for the evaluation of absolute lung resistivity with the Mk3.5 EIT system.
    Nebuya S; Noshiro M; Yonemoto A; Tateno S; Brown BH; Smallwood RH; Milnes P
    Physiol Meas; 2006 May; 27(5):S129-37. PubMed ID: 16636404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging of conductivity changes and electrode movement in EIT.
    Soleimani M; Gómez-Laberge C; Adler A
    Physiol Meas; 2006 May; 27(5):S103-13. PubMed ID: 16636402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using compound electrodes in electrical impedance tomography.
    Hua P; Woo EJ; Webster JG; Tompkins WJ
    IEEE Trans Biomed Eng; 1993 Jan; 40(1):29-34. PubMed ID: 8468073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimum electrode configuration for detection of leg movement using bio-impedance.
    Song CG; Kim SC; Nam KC; Kim DW
    Physiol Meas; 2005 Apr; 26(2):S59-68. PubMed ID: 15798247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrode placement configurations for 3D EIT.
    Graham BM; Adler A
    Physiol Meas; 2007 Jul; 28(7):S29-44. PubMed ID: 17664643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of four different FIM configurations--a simulation study.
    Pettersen FJ; Ferdous H; Kalvøy H; Martinsen ØG; Høgetveit JO
    Physiol Meas; 2014 Jun; 35(6):1067-82. PubMed ID: 24844930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An electrode addressing protocol for imaging brain function with electrical impedance tomography using a 16-channel semi-parallel system.
    Fabrizi L; McEwan A; Oh T; Woo EJ; Holder DS
    Physiol Meas; 2009 Jun; 30(6):S85-101. PubMed ID: 19491446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new six-electrode electrical impedance technique for probing deep organs in the human body.
    Roy SK; Karal MAS; Kadir MA; Rabbani KS
    Eur Biophys J; 2019 Dec; 48(8):711-719. PubMed ID: 31529144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.