These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 20648139)

  • 1. Upgraded 1.56 microm lidar at IMK-IFU with 0.28 J/pulse.
    Trickl T
    Appl Opt; 2010 Jul; 49(19):3732-40. PubMed ID: 20648139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman-shifted eye-safe aerosol lidar.
    Mayor SD; Spuler SM
    Appl Opt; 2004 Jul; 43(19):3915-24. PubMed ID: 15250558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doppler lidar atmospheric wind sensor: reevaluation of a 355-nm incoherent Doppler lidar.
    Rees D; McDermid IS
    Appl Opt; 1990 Oct; 29(28):4133-44. PubMed ID: 20577356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient conversion of a 1.064 μm Nd:YAG laser to the eye-safe region using a diamond Raman laser.
    Sabella A; Piper JA; Mildren RP
    Opt Express; 2011 Nov; 19(23):23554-60. PubMed ID: 22109234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvements of the aerosol algorithm in ozone lidar data processing by use of evolutionary strategies.
    Eisele H; Trickl T
    Appl Opt; 2005 May; 44(13):2638-51. PubMed ID: 15881073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methane detection with a narrow-band source at 3.4 µm based on a Nd:YAG pump laser and a combination of stimulated Raman scattering and difference frequency mixing.
    Lancaster DG; Dawes JM
    Appl Opt; 1996 Jul; 35(21):4041-5. PubMed ID: 21102808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diode-end-pumped passively Q-switched 1.33 microm Nd:Gd3AlxGa(5-x)O12 laser with V3+: YAG saturable absorber.
    Zhang B; Yang J; He J; Huang H; Liu S; Xu J; Liu F; Zhi Y; Tao X
    Opt Express; 2010 Jun; 18(12):12052-8. PubMed ID: 20588327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple, compact, and efficient diode-side-pumped linear intracavity frequency doubled Nd:YAG rod laser with 50 ns pulse width and 124 W green output power.
    Sharma SK; Mukhopadhyay PK; Singh A; Kandasamy R; Oak SM
    Rev Sci Instrum; 2010 Jul; 81(7):073104. PubMed ID: 20687702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple Stokes wavelength generation in H(2), D(2), and CH(4) for lidar aerosol measurements.
    Chu Z; Singh UN; Wilkerson TD
    Appl Opt; 1991 Oct; 30(30):4350-7. PubMed ID: 20717207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro comparison of stone retropulsion and fragmentation of the frequency doubled, double pulse nd:yag laser and the holmium:yag laser.
    Marguet CG; Sung JC; Springhart WP; L'Esperance JO; Zhou S; Zhong P; Albala DM; Preminger GM
    J Urol; 2005 May; 173(5):1797-800. PubMed ID: 15821590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1-pps 2-microsec pulse high-energy frequency-doubled Nd:YAG/ glass laser for studying combustion processes.
    Brannon PJ; Franklin FR; Jones ED
    Appl Opt; 1982 May; 21(10):1758-63. PubMed ID: 20389935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Plasma formation in Nd:YAG laser surgery].
    Jungnickel K; Rein S; Vogel A
    Ophthalmologe; 1992 Aug; 89(4):283-7. PubMed ID: 1304200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman shifter optimized for lidar at a 1.5 microm wavelength.
    Spuler SM; Mayor SD
    Appl Opt; 2007 May; 46(15):2990-5. PubMed ID: 17514248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of 360 ps laser pulse with 3 J energy by stimulated Brillouin scattering with a nonfocusing scheme.
    Zhu X; Wang Y; Lu Z; Zhang H
    Opt Express; 2015 Sep; 23(18):23318-28. PubMed ID: 26368433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remote Raman spectra of benzene obtained from 217 meters using a single 532 nm laser pulse.
    Chen T; Madey JM; Price FM; Sharma SK; Lienert B
    Appl Spectrosc; 2007 Jun; 61(6):624-9. PubMed ID: 17650374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coherent launch-site atmospheric wind sounder: theory and experiment.
    Hawley JG; Targ R; Henderson SW; Hale CP; Kavaya MJ; Moerder D
    Appl Opt; 1993 Aug; 32(24):4557-68. PubMed ID: 20830118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diode-pumped Q-switched Nd:YAG-KGW Raman laser operating in two-color modulation.
    Wang W; Gong M; Zhao Q; Hu Z; Fu C
    Opt Express; 2010 Feb; 18(3):2655-61. PubMed ID: 20174095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parametric study of an excimer-pumped, nitrogen Raman shifter for lidar applications.
    Bisson SE
    Appl Opt; 1995 Jun; 34(18):3406-12. PubMed ID: 21052152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliable Stimulated Brillouin Scattering Compression of Nd:YAG Laser Pulses with Liquid Fluorocarbon for Long-Time Operation at 10 Hz.
    Kmetik V; Fiedorowicz H; Andreev AA; Witte KJ; Daido H; Fujita H; Nakatsuka M; Yamanaka T
    Appl Opt; 1998 Oct; 37(30):7085-90. PubMed ID: 18301529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. V3+:YAG as the saturable absorber for a diode-pumped quasi-three-level dual-wavelength Nd:GGG laser.
    Huang HT; He JL; Zhang BT; Yang JF; Xu JL; Zuo CH; Tao XT
    Opt Express; 2010 Feb; 18(4):3352-7. PubMed ID: 20389343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.