These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 20648140)

  • 61. Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study.
    Lin Y; Gao H; Nalcioglu O; Gulsen G
    Phys Med Biol; 2007 Sep; 52(18):5569-85. PubMed ID: 17804882
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Fluorescence optical diffusion tomography using multiple-frequency data.
    Milstein AB; Stott JJ; Oh S; Boas DA; Millane RP; Bouman CA; Webb KJ
    J Opt Soc Am A Opt Image Sci Vis; 2004 Jun; 21(6):1035-49. PubMed ID: 15191186
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Implementation of edge-preserving regularization for frequency-domain diffuse optical tomography.
    Chen LY; Pan MC; Pan MC
    Appl Opt; 2012 Jan; 51(1):43-54. PubMed ID: 22270412
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A comparison of truncated total least squares with Tikhonov regularization in imaging by ultrasound inverse scattering.
    Liu C; Wang Y; Heng PA
    Phys Med Biol; 2003 Aug; 48(15):2437-51. PubMed ID: 12953908
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effective contrast recovery in rapid dynamic near-infrared diffuse optical tomography using ℓ(1)-norm-based linear image reconstruction method.
    Shaw CB; Yalavarthy PK
    J Biomed Opt; 2012 Aug; 17(8):086009. PubMed ID: 23224196
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Image analysis for assessing molecular activity changes in time-dependent geometries.
    Marias K; Ripoll J; Meyer H; Ntziachristos V; Orphanoudakis S
    IEEE Trans Med Imaging; 2005 Jul; 24(7):894-900. PubMed ID: 16011319
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A modelling error approach for the estimation of optical absorption in the presence of anisotropies.
    Heino J; Somersalo E
    Phys Med Biol; 2004 Oct; 49(20):4785-98. PubMed ID: 15566175
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Parallel imaging with nonlinear reconstruction using variational penalties.
    Knoll F; Clason C; Bredies K; Uecker M; Stollberger R
    Magn Reson Med; 2012 Jan; 67(1):34-41. PubMed ID: 21710612
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Reweighted L1 regularization for restraining artifacts in FMT reconstruction images with limited measurements.
    Xie W; Deng Y; Wang K; Yang X; Luo Q
    Opt Lett; 2014 Jul; 39(14):4148-51. PubMed ID: 25121673
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Resolution improvement in optical projection tomography by the focal scanning method.
    Miao Q; Hayenga J; Meyer MG; Neumann T; Nelson AC; Seibel EJ
    Opt Lett; 2010 Oct; 35(20):3363-5. PubMed ID: 20967067
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fluorescence-enhanced optical tomography of a large tissue phantom using point illumination geometries.
    Roy R; Godavarty A; Sevick-Muraca EM
    J Biomed Opt; 2006; 11(4):044007. PubMed ID: 16965164
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Quality-based registration and reconstruction of optical tomography volumes.
    Wein W; Blume M; Leischner U; Dodt HU; Navab N
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):718-25. PubMed ID: 18044632
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Comparison of noncontact and fiber-based fluorescence-mediated tomography.
    Schulz RB; Peter J; Semmler W; D'Andrea C; Valentini G; Cubeddu R
    Opt Lett; 2006 Mar; 31(6):769-71. PubMed ID: 16544618
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Contrast-detail analysis characterizing diffuse optical fluorescence tomography image reconstruction.
    Davis SC; Pogue BW; Dehghani H; Paulsen KD
    J Biomed Opt; 2005; 10(5):050501. PubMed ID: 16292936
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium.
    Hall D; Ma G; Lesage F; Wang Y
    Opt Lett; 2004 Oct; 29(19):2258-60. PubMed ID: 15524373
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A self-normalized, full time-resolved method for fluorescence diffuse optical tomography.
    Gao F; Zhao H; Zhang L; Tanikawa Y; Marjono A; Yamada Y
    Opt Express; 2008 Aug; 16(17):13104-21. PubMed ID: 18711549
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio.
    Soubret A; Ripoll J; Ntziachristos V
    IEEE Trans Med Imaging; 2005 Oct; 24(10):1377-86. PubMed ID: 16229423
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Boundary conditions in photoacoustic tomography and image reconstruction.
    Wang LV; Yang X
    J Biomed Opt; 2007; 12(1):014027. PubMed ID: 17343502
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Coupled third-order simplified spherical harmonics and diffusion equation-based fluorescence tomographic imaging of liver cancer.
    Chen X; Sun F; Yang D; Liang J
    J Biomed Opt; 2015; 20(9):090502. PubMed ID: 26385654
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm.
    Song X; Wang D; Chen N; Bai J; Wang H
    Opt Express; 2007 Dec; 15(26):18300-17. PubMed ID: 19551128
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.