BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 20648195)

  • 1. Noniterative approach to the missing data problem in coherent diffraction imaging by phase retrieval.
    Nakajima N
    Appl Opt; 2010 Jul; 49(21):4100-7. PubMed ID: 20648195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental verification of coherent diffractive imaging by a direct phase retrieval method with an aperture-array filter.
    Nakajima N
    Opt Lett; 2011 Jun; 36(12):2284-6. PubMed ID: 21685994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase retrieval from a high-numerical-aperture intensity distribution by use of an aperture-array filter.
    Nakajima N
    J Opt Soc Am A Opt Image Sci Vis; 2009 Oct; 26(10):2172-80. PubMed ID: 19798394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Fourier-domain constraint for fast phase retrieval in coherent diffraction imaging.
    Latychevskaia T; Longchamp JN; Fink HW
    Opt Express; 2011 Sep; 19(20):19330-9. PubMed ID: 21996873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherent diffractive imaging beyond the Fresnel approximation using a deterministic phase-retrieval method with an aperture-array filter.
    Nakajima N
    Appl Opt; 2013 Mar; 52(7):C1-10. PubMed ID: 23458810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time coherent diffractive imaging with convolution-solvable sampling array.
    Guo CS; Liang K; Zhang XT; Wang HT
    Opt Lett; 2010 Mar; 35(6):850-2. PubMed ID: 20237620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase retrieval from single biomolecule diffraction pattern.
    Ikeda S; Kono H
    Opt Express; 2012 Feb; 20(4):3375-87. PubMed ID: 22418096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lensless coherent imaging by a deterministic phase retrieval method with an aperture-array filter.
    Nakajima N
    J Opt Soc Am A Opt Image Sci Vis; 2008 Mar; 25(3):742-50. PubMed ID: 18311245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase retrieval in x-ray lensless holography by reference beam tuning.
    Zhu D; Wu B; Rick R; Stöhr J; Scherz A
    Opt Lett; 2009 Sep; 34(17):2604-6. PubMed ID: 19724505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lensless imaging from diffraction intensity measurements by use of a noniterative phase-retrieval method.
    Nakajima N
    Appl Opt; 2004 Mar; 43(8):1710-8. PubMed ID: 15046175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noniterative phase retrieval from a single diffraction intensity pattern by use of an aperture array.
    Nakajima N
    Phys Rev Lett; 2007 Jun; 98(22):223901. PubMed ID: 17677843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dark-field phase retrieval under the constraint of the Friedel symmetry in coherent X-ray diffraction imaging.
    Kobayashi A; Sekiguchi Y; Takayama Y; Oroguchi T; Nakasako M
    Opt Express; 2014 Nov; 22(23):27892-909. PubMed ID: 25402031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Framework for three-dimensional coherent diffraction imaging by focused beam x-ray Bragg ptychography.
    Hruszkewycz SO; Holt MV; Tripathi A; Maser J; Fuoss PH
    Opt Lett; 2011 Jun; 36(12):2227-9. PubMed ID: 21685975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction of a yeast cell from X-ray diffraction data.
    Thibault P; Elser V; Jacobsen C; Shapiro D; Sayre D
    Acta Crystallogr A; 2006 Jul; 62(Pt 4):248-61. PubMed ID: 16788265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method for correcting the effect of specimen drift on coherent diffractive imaging.
    Martin AV; Allen LJ; Ishizuka K
    Ultramicroscopy; 2010 Mar; 110(4):359-65. PubMed ID: 20149537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic resolution imaging of a carbon nanotube from diffraction intensities.
    Zuo JM; Vartanyants I; Gao M; Zhang R; Nagahara LA
    Science; 2003 May; 300(5624):1419-21. PubMed ID: 12775837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards sub-A atomic resolution electron diffraction imaging of metallic nanoclusters: a simulation study of experimental parameters and reconstruction algorithms.
    Huang WJ; Jiang B; Sun RS; Zuo JM
    Ultramicroscopy; 2007 Nov; 107(12):1159-70. PubMed ID: 17383097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coherence and sampling requirements for diffractive imaging.
    Spence JC; Weierstall U; Howells M
    Ultramicroscopy; 2004 Nov; 101(2-4):149-52. PubMed ID: 15450660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Holographic x-ray image reconstruction through the application of differential and integral operators.
    Guizar-Sicairos M; Zhu D; Fienup JR; Wu B; Scherz A; Stöhr J
    Opt Lett; 2010 Apr; 35(7):928-30. PubMed ID: 20364172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of phase objects from experimental far field intensities by exponential filtering.
    Nakajima N
    Appl Opt; 1990 Aug; 29(23):3369-74. PubMed ID: 20567422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.