These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 20648289)

  • 1. Selective synthesis of nickel oxide nanowires and length effect on their electrochemical properties.
    Pang H; Lu Q; Zhang Y; Li Y; Gao F
    Nanoscale; 2010 Jun; 2(6):920-2. PubMed ID: 20648289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide.
    Meher SK; Justin P; Rao GR
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):2063-73. PubMed ID: 21568334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nickel oxide nanotubes: synthesis and electrochemical performance for use in lithium ion batteries.
    Needham SA; Wang GX; Liu HK; Yang L
    J Nanosci Nanotechnol; 2006 Jan; 6(1):77-81. PubMed ID: 16573073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribbon- and boardlike nanostructures of nickel hydroxide: synthesis, characterization, and electrochemical properties.
    Yang D; Wang R; He M; Zhang J; Liu Z
    J Phys Chem B; 2005 Apr; 109(16):7654-8. PubMed ID: 16851888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesoporous nickel oxide nanowires: hydrothermal synthesis, characterisation and applications for lithium-ion batteries and supercapacitors with superior performance.
    Su D; Kim HS; Kim WS; Wang G
    Chemistry; 2012 Jun; 18(26):8224-9. PubMed ID: 22589171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale morphology dependent pseudocapacitance of NiO: Influence of intercalating anions during synthesis.
    Meher SK; Justin P; Rao GR
    Nanoscale; 2011 Feb; 3(2):683-92. PubMed ID: 21180732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomolecule-assisted synthesis and electrochemical hydrogen storage of porous spongelike Ni3S2 nanostructures grown directly on nickel foils.
    Zhang B; Ye X; Dai W; Hou W; Xie Y
    Chemistry; 2006 Mar; 12(8):2337-42. PubMed ID: 16389618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological application of multi-component nanowires in hybrid devices powered by F1-ATPase motors.
    Ren Q; Zhao YP; Yue JC; Cui YB
    Biomed Microdevices; 2006 Sep; 8(3):201-8. PubMed ID: 16718405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study on the electrochemical properties of nanoporous nickel oxide nanowires and nanosheets prepared by a hydrothermal method.
    Nguyen K; Hoa ND; Hung CM; Thanh Le DT; Van Duy N; Van Hieu N
    RSC Adv; 2018 May; 8(35):19449-19455. PubMed ID: 35540984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable synthesis of nickel hydroxide and porous nickel oxide nanostructures with different morphologies.
    Dong L; Chu Y; Sun W
    Chemistry; 2008; 14(16):5064-72. PubMed ID: 18399523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential.
    Mu Y; Jia D; He Y; Miao Y; Wu HL
    Biosens Bioelectron; 2011 Feb; 26(6):2948-52. PubMed ID: 21167705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile synthesis of nickel oxide nanotubes and their antibacterial, electrochemical and magnetic properties.
    Pang H; Lu Q; Li Y; Gao F
    Chem Commun (Camb); 2009 Dec; (48):7542-4. PubMed ID: 20024273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures.
    Subramanian V; Zhu H; Vajtai R; Ajayan PM; Wei B
    J Phys Chem B; 2005 Nov; 109(43):20207-14. PubMed ID: 16853612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NiO111 nanosheets as efficient and recyclable adsorbents for dye pollutant removal from wastewater.
    Song Z; Chen L; Hu J; Richards R
    Nanotechnology; 2009 Jul; 20(27):275707. PubMed ID: 19531863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled synthesis of mesoporous hematite nanostructures and their application as electrochemical capacitor electrodes.
    Wang D; Wang Q; Wang T
    Nanotechnology; 2011 Apr; 22(13):135604. PubMed ID: 21343642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A template and catalyst-free metal-etching-oxidation method to synthesize aligned oxide nanowire arrays: NiO as an example.
    Wei ZP; Arredondo M; Peng HY; Zhang Z; Guo DL; Xing GZ; Li YF; Wong LM; Wang SJ; Valanoor N; Wu T
    ACS Nano; 2010 Aug; 4(8):4785-91. PubMed ID: 20614899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural characterization of nickel oxide nanowires by X-ray absorption near-edge structure spectroscopy.
    Wu ZY; Liu CM; Guo L; Hu R; Abbas MI; Hu TD; Xu HB
    J Phys Chem B; 2005 Feb; 109(7):2512-5. PubMed ID: 16851250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and structural and magnetic characterization of Ni(core)/NiO(shell) nanoparticles.
    Johnston-Peck AC; Wang J; Tracy JB
    ACS Nano; 2009 May; 3(5):1077-84. PubMed ID: 19361203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of yield in magnetic cell separations using nickel nanowires of different lengths.
    Hultgren A; Tanase M; Felton EJ; Bhadriraju K; Salem AK; Chen CS; Reich DH
    Biotechnol Prog; 2005; 21(2):509-15. PubMed ID: 15801791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, characterization, and electrochemical properties of Ag2V4O11 and AgVO3 1-D nano/microstructures.
    Zhang S; Li W; Li C; Chen J
    J Phys Chem B; 2006 Dec; 110(49):24855-63. PubMed ID: 17149905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.