These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 20648368)

  • 41. Structural stability of TiO2 at high pressure in density-functional theory based calculations.
    Wu X; Holbig E; Steinle-Neumann G
    J Phys Condens Matter; 2010 Jul; 22(29):295501. PubMed ID: 21399308
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of the structures of size-selected TiO2 nanoparticles using X-ray absorption spectroscopy.
    Choi HC; Ahn HJ; Jung YM; Lee MK; Shin HJ; Kim SB; Sung YE
    Appl Spectrosc; 2004 May; 58(5):598-602. PubMed ID: 15165337
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coadsorption of horseradish peroxidase with thionine on TiO2 nanotubes for biosensing.
    Liu S; Chen A
    Langmuir; 2005 Aug; 21(18):8409-13. PubMed ID: 16114950
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Large Seebeck coefficients of protonated titanate nanotubes for high-temperature thermoelectric conversion.
    Miao L; Tanemura S; Huang R; Liu CY; Huang CM; Xu G
    ACS Appl Mater Interfaces; 2010 Aug; 2(8):2355-9. PubMed ID: 20735107
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Crystal structures of titanate nanotubes: a Raman scattering study.
    Gao T; Fjellvåg H; Norby P
    Inorg Chem; 2009 Feb; 48(4):1423-32. PubMed ID: 19143511
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Coaxial heterogeneous structure of TiO2 nanotube arrays with CdS as a superthin coating synthesized via modified electrochemical atomic layer deposition.
    Zhu W; Liu X; Liu H; Tong D; Yang J; Peng J
    J Am Chem Soc; 2010 Sep; 132(36):12619-26. PubMed ID: 20536235
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Size selective behavior of mesenchymal stem cells on ZrO(2) and TiO(2) nanotube arrays.
    Bauer S; Park J; Faltenbacher J; Berger S; von der Mark K; Schmuki P
    Integr Biol (Camb); 2009 Sep; 1(8-9):525-32. PubMed ID: 20023767
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Correlation between nanoscale surface potential and power conversion efficiency of P3HT/TiO2 nanorod bulk heterojunction photovoltaic devices.
    Wu MC; Wu YJ; Yen WC; Lo HH; Lin CF; Su WF
    Nanoscale; 2010 Aug; 2(8):1448-54. PubMed ID: 20820733
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays.
    Wolcott A; Smith WA; Kuykendall TR; Zhao Y; Zhang JZ
    Small; 2009 Jan; 5(1):104-11. PubMed ID: 19040214
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Probing the electronic structure and band gap evolution of titanium oxide clusters (TiO(2))(n)(-) (n = 1-10) using photoelectron spectroscopy.
    Zhai HJ; Wang LS
    J Am Chem Soc; 2007 Mar; 129(10):3022-6. PubMed ID: 17300196
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tube-in-tube TiO₂ nanotubes with porous walls: fabrication, formation mechanism, and photocatalytic properties.
    Xu X; Fang X; Zhai T; Zeng H; Liu B; Hu X; Bando Y; Golberg D
    Small; 2011 Feb; 7(4):445-9. PubMed ID: 21360800
    [No Abstract]   [Full Text] [Related]  

  • 52. Synthesis of poly(3-hexylthiophene) grafted TiO2 nanotube composite.
    Lu MD; Yang SM
    J Colloid Interface Sci; 2009 May; 333(1):128-34. PubMed ID: 19246046
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced photocatalysis on TiO2 nanotube arrays modified with molecularly imprinted TiO2 thin film.
    Liu Y; Liu R; Liu C; Luo S; Yang L; Sui F; Teng Y; Yang R; Cai Q
    J Hazard Mater; 2010 Oct; 182(1-3):912-8. PubMed ID: 20673610
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modeling localized photoinduced electrons in rutile-TiO2 using periodic DFT+U methodology.
    Jedidi A; Markovits A; Minot C; Bouzriba S; Abderraba M
    Langmuir; 2010 Nov; 26(21):16232-8. PubMed ID: 20572639
    [TBL] [Abstract][Full Text] [Related]  

  • 55. First-principles study of lattice dynamics and thermodynamics of TiO2 polymorphs.
    Mei ZG; Wang Y; Shang SL; Liu ZK
    Inorg Chem; 2011 Aug; 50(15):6996-7003. PubMed ID: 21714527
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Density functional theory calculations of dense TiO2 polymorphs: implication for visible-light-responsive photocatalysts.
    Kuo MY; Chen CL; Hua CY; Yang HC; Shen P
    J Phys Chem B; 2005 May; 109(18):8693-700. PubMed ID: 16852029
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mapping the surface (hydr)oxo-groups of titanium oxide and its interface with an aqueous solution: the state of the art and a new approach.
    Panagiotou GD; Petsi T; Bourikas K; Garoufalis CS; Tsevis A; Spanos N; Kordulis C; Lycourghiotis A
    Adv Colloid Interface Sci; 2008 Oct; 142(1-2):20-42. PubMed ID: 18511015
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Energy minimization of single-walled titanium oxide nanotubes.
    Hart JN; Parker SC; Lapkin AA
    ACS Nano; 2009 Nov; 3(11):3401-12. PubMed ID: 19845336
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The fabrication of highly ordered and visible-light-responsive Fe-C-N-codoped TiO2 nanotubes.
    Isimjan TT; Ruby AE; Rohani S; Ray AK
    Nanotechnology; 2010 Feb; 21(5):055706. PubMed ID: 20023311
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis of gold nanoclusters: a fluorescent marker for water-soluble TiO2 nanotubes.
    Ratanatawanate C; Yu J; Zhou C; Zheng J; Balkus KJ
    Nanotechnology; 2011 Feb; 22(6):065601. PubMed ID: 21212487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.