These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 20648509)
41. Molecular biology. The art of assembly. Szoka F Science; 2008 Feb; 319(5863):578-9. PubMed ID: 18239114 [No Abstract] [Full Text] [Related]
42. Targeted quantum dot conjugates for siRNA delivery. Derfus AM; Chen AA; Min DH; Ruoslahti E; Bhatia SN Bioconjug Chem; 2007; 18(5):1391-6. PubMed ID: 17630789 [TBL] [Abstract][Full Text] [Related]
43. Tailoring the RNAi efficiency of polyplexes. Zhang W; Xu H Bioengineered; 2014; 5(3):152-4. PubMed ID: 24637709 [No Abstract] [Full Text] [Related]
44. Biodegradable dextran nanogels as functional carriers for the intracellular delivery of small interfering RNA. Raemdonck K; Naeye B; Høgset A; Demeester J; De Smedt SC J Control Release; 2010 Nov; 148(1):e95-6. PubMed ID: 21529657 [No Abstract] [Full Text] [Related]
45. Effect of cationic carriers on the pharmacokinetics and tumor localization of nucleic acids after intravenous administration. de Wolf HK; Snel CJ; Verbaan FJ; Schiffelers RM; Hennink WE; Storm G Int J Pharm; 2007 Mar; 331(2):167-75. PubMed ID: 17134859 [TBL] [Abstract][Full Text] [Related]
46. The systemic delivery of siRNAs by a cell penetrating peptide, low molecular weight protamine. Choi YS; Lee JY; Suh JS; Kwon YM; Lee SJ; Chung JK; Lee DS; Yang VC; Chung CP; Park YJ Biomaterials; 2010 Feb; 31(6):1429-43. PubMed ID: 19954842 [TBL] [Abstract][Full Text] [Related]
47. Hyaluronic acid complexed to biodegradable poly L-arginine for targeted delivery of siRNAs. Kim EJ; Shim G; Kim K; Kwon IC; Oh YK; Shim CK J Gene Med; 2009 Sep; 11(9):791-803. PubMed ID: 19569085 [TBL] [Abstract][Full Text] [Related]
48. Surface-modified LPD nanoparticles for tumor targeting. Li SD; Huang L Ann N Y Acad Sci; 2006 Oct; 1082():1-8. PubMed ID: 17145918 [TBL] [Abstract][Full Text] [Related]
49. In vivo cellular delivery of siRNA. Brink PR; Robinson RB; Rosen MR; Cohen IS IDrugs; 2010 Jun; 13(6):383-7. PubMed ID: 20506060 [TBL] [Abstract][Full Text] [Related]
50. State of the art and perspectives for the delivery of antisense oligonucleotides and siRNA by polymeric nanocarriers. Fattal E; Bochot A Int J Pharm; 2008 Dec; 364(2):237-48. PubMed ID: 18619528 [TBL] [Abstract][Full Text] [Related]
54. Carbonate apatite-facilitated intracellular delivery of siRNA. Park K J Control Release; 2010 Oct; 147(1):1. PubMed ID: 20728485 [No Abstract] [Full Text] [Related]
55. Adamantane in Drug Delivery Systems and Surface Recognition. Štimac A; Šekutor M; Mlinarić-Majerski K; Frkanec L; Frkanec R Molecules; 2017 Feb; 22(2):. PubMed ID: 28212339 [TBL] [Abstract][Full Text] [Related]
56. Focus on RNA interference: from nanoformulations to in vivo delivery. Karp JM; Peer D Nanotechnology; 2018 Jan; 29(1):010201. PubMed ID: 29185433 [No Abstract] [Full Text] [Related]
57. RNA interference: Homing in on delivery. Baker M Nature; 2010 Apr; 464(7292):1225-8. PubMed ID: 20414308 [No Abstract] [Full Text] [Related]
58. Research highlights: Highlights from the last year in nanomedicine. Brzicová T; Feliu N; Fadeel B Nanomedicine (Lond); 2014 Jan; 9(1):17-20. PubMed ID: 24354812 [No Abstract] [Full Text] [Related]
59. Triggering of RNA interference with RNA-RNA, RNA-DNA, and DNA-RNA nanoparticles. Afonin KA; Viard M; Kagiampakis I; Case CL; Dobrovolskaia MA; Hofmann J; Vrzak A; Kireeva M; Kasprzak WK; KewalRamani VN; Shapiro BA ACS Nano; 2015 Jan; 9(1):251-9. PubMed ID: 25521794 [TBL] [Abstract][Full Text] [Related]