BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 20648920)

  • 21. EDHF mediates the relaxation of stretched canine femoral arteries to acetylcholine.
    Woodley N; Meunier RL; Barclay JK
    Can J Physiol Pharmacol; 2001 Nov; 79(11):924-31. PubMed ID: 11760094
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression of inducible nitric oxide synthase in cultured smooth muscle cells from rat mesenteric lymphatic vessels.
    Robertson DA; Hughes GA; Lyles GA
    Microcirculation; 2004 Sep; 11(6):503-15. PubMed ID: 15371131
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF.
    Zygmunt PM; Plane F; Paulsson M; Garland CJ; Högestätt ED
    Br J Pharmacol; 1998 Jul; 124(5):992-1000. PubMed ID: 9692786
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mesenteric vasodilator responses in cirrhotic rats: a role for nitric oxide?
    Mathie RT; Ralevic V; Moore KP; Burnstock G
    Hepatology; 1996 Jan; 23(1):130-6. PubMed ID: 8550032
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Persistence of EDHF pathway and impairment of the nitric oxide pathway after chronic mercury chloride exposure in rats: mechanisms of endothelial dysfunction.
    Omanwar S; Ravi K; Fahim M
    Hum Exp Toxicol; 2011 Nov; 30(11):1777-84. PubMed ID: 21148200
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of endothelium and K+ channels in dobutamine-induced relaxation in rat mesenteric artery.
    Huang Y; Kwok KH; Chan NW; Lau CW; Chen ZY
    Clin Exp Pharmacol Physiol; 1998 Jun; 25(6):405-11. PubMed ID: 9673814
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Suppression of acute experimental colitis by a highly selective inducible nitric-oxide synthase inhibitor, N-[3-(aminomethyl)benzyl]acetamidine.
    Kankuri E; Vaali K; Knowles RG; Lähde M; Korpela R; Vapaatalo H; Moilanen E
    J Pharmacol Exp Ther; 2001 Sep; 298(3):1128-32. PubMed ID: 11504810
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Essential role of nitric oxide in sepsis-induced impairment of endothelium-derived hyperpolarizing factor-mediated relaxation in rat pulmonary artery.
    Subramani J; Leo MD; Kathirvel K; Arunadevi R; Singh TU; Prakash VR; Mishra SK
    Eur J Pharmacol; 2010 Mar; 630(1-3):84-91. PubMed ID: 20035746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vasorelaxing effects of propranolol in rat aorta and mesenteric artery: a role for nitric oxide and calcium entry blockade.
    Priviero FB; Teixeira CE; Toque HA; Claudino MA; Webb RC; De Nucci G; Zanesco A; Antunes E
    Clin Exp Pharmacol Physiol; 2006; 33(5-6):448-55. PubMed ID: 16700877
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interleukin-2 protects against endothelial dysfunction induced by high glucose levels in rats.
    Qian LB; Wang HP; Qiu WL; Huang H; Bruce IC; Xia Q
    Vascul Pharmacol; 2006 Dec; 45(6):374-82. PubMed ID: 16837248
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of NO-cGMP pathway and potassium channels on the relaxation induced by clonidine in the rat mesenteric arterial bed.
    Pimentel AM; Costa CA; Carvalho LC; Brandão RM; Rangel BM; Tano T; Soares de Moura R; Resende AC
    Vascul Pharmacol; 2007 May; 46(5):353-9. PubMed ID: 17258511
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective iNOS inhibition prevents hypotension in septic rats while preserving endothelium-dependent vasodilation.
    Strunk V; Hahnenkamp K; Schneuing M; Fischer LG; Rich GF
    Anesth Analg; 2001 Mar; 92(3):681-7. PubMed ID: 11226101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Endogenous nitric oxide attenuates beta-adrenoceptor-mediated relaxation in rat aorta.
    Kang KB; van der Zypp A; Majewski H
    Clin Exp Pharmacol Physiol; 2007; 34(1-2):95-101. PubMed ID: 17201742
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impaired endothelium-dependent relaxation in mesenteric arteries of reduced renal mass hypertensive rats.
    Kimura K; Nishio I
    Scand J Clin Lab Invest; 1999 May; 59(3):199-204. PubMed ID: 10400164
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inducible nitric oxide synthase-derived superoxide contributes to hypereactivity in small mesenteric arteries from a rat model of chronic heart failure.
    Miller AA; Megson IL; Gray GA
    Br J Pharmacol; 2000 Sep; 131(1):29-36. PubMed ID: 10960065
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Endothelium-derived relaxing factor-mediated vasodilation in mouse mesenteric vascular beds.
    Fujiwara H; Wake Y; Hashikawa-Hobara N; Makino K; Takatori S; Zamami Y; Kitamura Y; Kawasaki H
    J Pharmacol Sci; 2012; 118(3):373-81. PubMed ID: 22450195
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence against a role of inducible nitric oxide synthase in the endothelial protective effects of delayed preconditioning.
    Laude K; Richard V; Henry JP; Lallemand F; Thuillez C
    Br J Pharmacol; 2000 Aug; 130(7):1547-52. PubMed ID: 10928956
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antisense knockdown of inducible nitric oxide synthase inhibits the relaxant effect of VIP in isolated smooth muscle cells of the mouse gastric fundus.
    Dick JM; Van Molle W; Libert C; Lefebvre RA
    Br J Pharmacol; 2001 Sep; 134(2):425-33. PubMed ID: 11564662
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Endothelium-dependent vasodilation in different rat hindlimb skeletal muscles.
    McAllister RM
    J Appl Physiol (1985); 2003 May; 94(5):1777-84. PubMed ID: 12533499
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibitory effects of PGD2, PGJ2 and 15-deoxy-delta12,14-PGJ2 on iNOS induction in rat mesenteric artery.
    Shirahase H; Kanda M; Nakamura S; Tarumi T; Uehara Y; Ichikawa A
    Life Sci; 2000 Apr; 66(22):2173-82. PubMed ID: 10834301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.