These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 20649006)

  • 1. [Prediction of G-protein-coupled receptor classes with pseudo amino acid composition].
    Gu Q; Ding Y; Zhang T; Shen Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Jun; 27(3):500-4. PubMed ID: 20649006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction protein structural classes with pseudo-amino acid composition: approximate entropy and hydrophobicity pattern.
    Zhang TL; Ding YS; Chou KC
    J Theor Biol; 2008 Jan; 250(1):186-93. PubMed ID: 17959199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of G-protein-coupled receptor classes based on the concept of Chou's pseudo amino acid composition: an approach from discrete wavelet transform.
    Qiu JD; Huang JH; Liang RP; Lu XQ
    Anal Biochem; 2009 Jul; 390(1):68-73. PubMed ID: 19364489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using the concept of Chou's pseudo amino acid composition to predict apoptosis proteins subcellular location: an approach by approximate entropy.
    Jiang X; Wei R; Zhang T; Gu Q
    Protein Pept Lett; 2008; 15(4):392-6. PubMed ID: 18473953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Chou's pseudo amino acid composition based on approximate entropy and an ensemble of AdaBoost classifiers to predict protein subnuclear location.
    Jiang X; Wei R; Zhao Y; Zhang T
    Amino Acids; 2008 May; 34(4):669-75. PubMed ID: 18256886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of G-protein-coupled receptor classes in low homology using Chou's pseudo amino acid composition with approximate entropy and hydrophobicity patterns.
    Gu Q; Ding YS; Zhang TL
    Protein Pept Lett; 2010 May; 17(5):559-67. PubMed ID: 19594431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using pseudo amino acid composition and binary-tree support vector machines to predict protein structural classes.
    Zhang TL; Ding YS
    Amino Acids; 2007 Nov; 33(4):623-9. PubMed ID: 17308864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GPCR-MPredictor: multi-level prediction of G protein-coupled receptors using genetic ensemble.
    Naveed M; Khan A
    Amino Acids; 2012 May; 42(5):1809-23. PubMed ID: 21505826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of G-protein coupled receptors at four levels.
    Gao QB; Wang ZZ
    Protein Eng Des Sel; 2006 Nov; 19(11):511-6. PubMed ID: 17032692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. G-protein-coupled receptor prediction using pseudo-amino-acid composition and multiscale energy representation of different physiochemical properties.
    Ur-Rehman Z; Khan A
    Anal Biochem; 2011 May; 412(2):173-82. PubMed ID: 21295004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classifying G-protein-coupled receptors to the finest subtype level.
    Gao QB; Ye XF; He J
    Biochem Biophys Res Commun; 2013 Sep; 439(2):303-8. PubMed ID: 23973783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GPCR-2L: predicting G protein-coupled receptors and their types by hybridizing two different modes of pseudo amino acid compositions.
    Xiao X; Wang P; Chou KC
    Mol Biosyst; 2011 Mar; 7(3):911-9. PubMed ID: 21180772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classifying G-protein coupled receptors with bagging classification tree.
    Huang Y; Cai J; Ji L; Li Y
    Comput Biol Chem; 2004 Oct; 28(4):275-80. PubMed ID: 15548454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of G-protein-coupled receptor classes.
    Chou KC
    J Proteome Res; 2005; 4(4):1413-8. PubMed ID: 16083294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of GPCRs with pseudo amino acid composition: employing composite features and grey incidence degree based classification.
    Zia-Ur-Rehman ; Khan A
    Protein Pept Lett; 2011 Sep; 18(9):872-8. PubMed ID: 21443502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the hierarchical classification of G protein-coupled receptors.
    Davies MN; Secker A; Freitas AA; Mendao M; Timmis J; Flower DR
    Bioinformatics; 2007 Dec; 23(23):3113-8. PubMed ID: 17956878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel and efficient technique for identification and classification of GPCRs.
    Gupta R; Mittal A; Singh K
    IEEE Trans Inf Technol Biomed; 2008 Jul; 12(4):541-8. PubMed ID: 18632334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using optimized evidence-theoretic K-nearest neighbor classifier and pseudo-amino acid composition to predict membrane protein types.
    Shen H; Chou KC
    Biochem Biophys Res Commun; 2005 Aug; 334(1):288-92. PubMed ID: 16002049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fuzzy KNN for predicting membrane protein types from pseudo-amino acid composition.
    Shen HB; Yang J; Chou KC
    J Theor Biol; 2006 May; 240(1):9-13. PubMed ID: 16197963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the coupling specificity of GPCRs to G-proteins by support vector machines.
    Guan CP; Jiang ZR; Zhou YH
    Genomics Proteomics Bioinformatics; 2005 Nov; 3(4):247-51. PubMed ID: 16689694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.