These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 20649007)

  • 1. [Modeling of p53 signaling pathway based on S-system equations].
    Liu S; Tao C; Huang Z; Huang S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Jun; 27(3):505-10. PubMed ID: 20649007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A combined pathway to simulate CDK-dependent phosphorylation and ARF-dependent stabilization for p53 transcriptional activity.
    Doi A; Nagasaki M; Ueno K; Matsuno H; Miyano S
    Genome Inform; 2006; 17(1):112-23. PubMed ID: 17503361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical modeling of cell cycle regulation in response to DNA damage: exploring mechanisms of cell-fate determination.
    Iwamoto K; Hamada H; Eguchi Y; Okamoto M
    Biosystems; 2011 Mar; 103(3):384-91. PubMed ID: 21095219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel signaling molecules implicated in tumor-associated fatty acid synthase-dependent breast cancer cell proliferation and survival: Role of exogenous dietary fatty acids, p53-p21WAF1/CIP1, ERK1/2 MAPK, p27KIP1, BRCA1, and NF-kappaB.
    Menendez JA; Mehmi I; Atlas E; Colomer R; Lupu R
    Int J Oncol; 2004 Mar; 24(3):591-608. PubMed ID: 14767544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential involvement of the CD95 (Fas/APO-1) receptor/ligand system on apoptosis induced by the wild-type p53 gene transfer in human cancer cells.
    Fukazawa T; Fujiwara T; Morimoto Y; Shao J; Nishizaki M; Kadowaki Y; Hizuta A; Owen-Schaub LB; Roth JA; Tanaka N
    Oncogene; 1999 Apr; 18(13):2189-99. PubMed ID: 10327065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of human polyomavirus BK with the tumor-suppressor protein p53.
    Shivakumar CV; Das GC
    Oncogene; 1996 Jul; 13(2):323-32. PubMed ID: 8710371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method.
    Fujita A; Sato JR; Garay-Malpartida HM; Morettin PA; Sogayar MC; Ferreira CE
    Bioinformatics; 2007 Jul; 23(13):1623-30. PubMed ID: 17463021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of p53 as a transcription factor in the induction of apoptosis.
    Yonish-Rouach E; Choisy C; Deguin V; Breugnot C; May E
    Behring Inst Mitt; 1996 Oct; (97):60-71. PubMed ID: 8950467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional interplay between p53 and E2F through co-activator p300.
    Lee CW; Sørensen TS; Shikama N; La Thangue NB
    Oncogene; 1998 May; 16(21):2695-710. PubMed ID: 9652736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. E2F1 uses the ATM signaling pathway to induce p53 and Chk2 phosphorylation and apoptosis.
    Powers JT; Hong S; Mayhew CN; Rogers PM; Knudsen ES; Johnson DG
    Mol Cancer Res; 2004 Apr; 2(4):203-14. PubMed ID: 15140942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PHTS, a novel putative tumor suppressor, is involved in the transformation reversion of HeLaHF cells independently of the p53 pathway.
    Yu DH; Fan W; Liu G; Nguy V; Chatterton JE; Long S; Ke N; Meyhack B; Bruengger A; Brachat A; Wong-Staal F; Li QX
    Exp Cell Res; 2006 Apr; 312(6):865-76. PubMed ID: 16413018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A SNP in the flt-1 promoter integrates the VEGF system into the p53 transcriptional network.
    Menendez D; Krysiak O; Inga A; Krysiak B; Resnick MA; Schönfelder G
    Proc Natl Acad Sci U S A; 2006 Jan; 103(5):1406-11. PubMed ID: 16432214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of Mdr1b expression by tumor necrosis factor-alpha in rat liver cells is independent of p53 but requires NF-kappaB signaling.
    Ros JE; Schuetz JD; Geuken M; Streetz K; Moshage H; Kuipers F; Manns MP; Jansen PL; Trautwein C; Müller M
    Hepatology; 2001 Jun; 33(6):1425-31. PubMed ID: 11391531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA damage induces a novel p53-survivin signaling pathway regulating cell cycle and apoptosis in acute lymphoblastic leukemia cells.
    Zhou M; Gu L; Li F; Zhu Y; Woods WG; Findley HW
    J Pharmacol Exp Ther; 2002 Oct; 303(1):124-31. PubMed ID: 12235242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular neuro-oncology and the development of targeted therapeutic strategies for brain tumors. Part 4: p53 signaling pathway.
    Newton HB
    Expert Rev Anticancer Ther; 2005 Feb; 5(1):177-91. PubMed ID: 15757449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultraviolet irradiation induces BRCA2 protein depletion through a p53-independent and protein synthesis-dependent pathway.
    Wang SC; Makino K; Su LK; Pao AY; Kim JS; Hung MC
    Cancer Res; 2001 Apr; 61(7):2838-42. PubMed ID: 11306454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of the p53 pathway in response to ionizing radiation in uveal melanoma.
    Sun Y; Tran BN; Worley LA; Delston RB; Harbour JW
    Invest Ophthalmol Vis Sci; 2005 May; 46(5):1561-4. PubMed ID: 15851551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of p53 activity by HIPK2: molecular mechanisms and therapeutical implications in human cancer cells.
    Puca R; Nardinocchi L; Givol D; D'Orazi G
    Oncogene; 2010 Aug; 29(31):4378-87. PubMed ID: 20514025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding signaling in yeast: Insights from network analysis.
    Arga KY; Onsan ZI; Kirdar B; Ulgen KO; Nielsen J
    Biotechnol Bioeng; 2007 Aug; 97(5):1246-58. PubMed ID: 17252576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical induced alterations in p53 signaling.
    Högberg J; Silins I; Stenius U
    EXS; 2009; 99():181-208. PubMed ID: 19157062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.