These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 20649037)

  • 1. [Comparison of the efficiency of techniques for deconvolving auditory-evoked potentials with high rate stimulation].
    Su Y; Wang T; Fu Q; Liang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Jun; 27(3):647-51. PubMed ID: 20649037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simulation study assessing the efficiency of deriving evoked responses using high stimulus rate.
    Wang T; Su YY; Shen Q; Ma J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5033-6. PubMed ID: 19163847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A preliminary investigation of the deconvolution of auditory evoked potentials using a session jittering paradigm.
    Wang T; Zhan C; Yan G; Bohórquez J; Özdamar Ö
    J Neural Eng; 2013 Apr; 10(2):026023. PubMed ID: 23528676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wiener filter deconvolution of overlapping evoked potentials.
    Wang T; Ozdamar O; Bohórquez J; Shen Q; Cheour M
    J Neurosci Methods; 2006 Dec; 158(2):260-70. PubMed ID: 16814393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deconvolution of evoked responses obtained at high stimulus rates.
    Delgado RE; Ozdamar O
    J Acoust Soc Am; 2004 Mar; 115(3):1242-51. PubMed ID: 15058345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorted averaging--application to auditory event-related responses.
    Rahne T; von Specht H; Mühler R
    J Neurosci Methods; 2008 Jul; 172(1):74-8. PubMed ID: 18499265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Independent component analysis for auditory evoked potentials and cochlear implant artifact estimation.
    Castañeda-Villa N; James CJ
    IEEE Trans Biomed Eng; 2011 Feb; 58(2):348-54. PubMed ID: 20813628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auditory brainstem and middle latency responses recorded at fast rates with randomized stimulation.
    Valderrama JT; de la Torre A; Alvarez IM; Segura JC; Thornton AR; Sainz M; Vargas JL
    J Acoust Soc Am; 2014 Dec; 136(6):3233. PubMed ID: 25480070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Least-squares (LS) deconvolution of a series of overlapping cortical auditory evoked potentials: a simulation and experimental study.
    Bardy F; Van Dun B; Dillon H; Cowan R
    J Neural Eng; 2014 Aug; 11(4):046016. PubMed ID: 24963952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory evoked potentials for the assessment of depth of anaesthesia: different configurations of artefact detection algorithms.
    Luecke D; Stockmanns G; Gallinat M; Kochs EF; Schneider G
    Biomed Tech (Berl); 2007 Feb; 52(1):90-5. PubMed ID: 17313341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of the 40-Hz auditory steady-state response (ASSR) explained using convolution.
    Bohórquez J; Ozdamar O
    Clin Neurophysiol; 2008 Nov; 119(11):2598-607. PubMed ID: 18818122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New metric for optimizing Continuous Loop Averaging Deconvolution (CLAD) sequences under the 1/f noise model.
    Peng X; Yuan H; Chen W; Wang T; Ding L
    PLoS One; 2017; 12(4):e0175354. PubMed ID: 28414803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective processing of auditory evoked responses with iterative-randomized stimulation and averaging: A strategy for evaluating the time-invariant assumption.
    Valderrama JT; de la Torre A; Medina C; Segura JC; Thornton ARD
    Hear Res; 2016 Mar; 333():66-76. PubMed ID: 26778545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methodology to estimate the transient evoked responses for the generation of steady state responses.
    Bohórquez J; Ozdamar O; Açikgöz N; Yavuz E
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2444-7. PubMed ID: 18002488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acquisition and analysis of high rate deconvolved auditory evoked potentials during sleep.
    Millan J; Ozdamar O; Bohórquez J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4987-90. PubMed ID: 17946667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous time wavelet entropy of auditory evoked potentials.
    Cek ME; Ozgoren M; Savaci FA
    Comput Biol Med; 2010 Jan; 40(1):90-6. PubMed ID: 20022318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Optimal estimation of temporal non-stationary signals by using simulated annealing: application to brainstem auditory evoked potentials].
    Naĭt-Ali A; Siarri P
    Med Tekh; 2003; (3):42-6. PubMed ID: 12872645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of wavelets on multiscale analysis and parametrization of midlatency auditory evoked potentials.
    Scheller B; Zwissler B; Daunderer M; Schneider G; Schwender D; Rentschler I
    Biol Cybern; 2006 Sep; 95(3):193-203. PubMed ID: 16724241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repetition suppression of the rat auditory evoked potential at brief stimulus intervals.
    Budd TW; Nakamura T; Fulham WR; Todd J; Schall U; Hunter M; Hodgson DM; Michie PT
    Brain Res; 2013 Mar; 1498():59-68. PubMed ID: 23276494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal electrode selection for multi-channel electroencephalogram based detection of auditory steady-state responses.
    Van Dun B; Wouters J; Moonen M
    J Acoust Soc Am; 2009 Jul; 126(1):254-68. PubMed ID: 19603882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.