These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 20649424)

  • 1. HypE: an algorithm for fast hypervolume-based many-objective optimization.
    Bader J; Zitzler E
    Evol Comput; 2011; 19(1):45-76. PubMed ID: 20649424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient algorithm for computing hypervolume contributions.
    Bringmann K; Friedrich T
    Evol Comput; 2010; 18(3):383-402. PubMed ID: 20560759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new evolutionary algorithm for solving many-objective optimization problems.
    Zou X; Chen Y; Liu M; Kang L
    IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1402-12. PubMed ID: 18784020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplicative approximations, optimal hypervolume distributions, and the choice of the reference point.
    Friedrich T; Neumann F; Thyssen C
    Evol Comput; 2015; 23(1):131-59. PubMed ID: 24654679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. S-Metric calculation by considering dominated hypervolume as Klee's measure problem.
    Beume N
    Evol Comput; 2009; 17(4):477-92. PubMed ID: 19916778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How to Specify a Reference Point in Hypervolume Calculation for Fair Performance Comparison.
    Ishibuchi H; Imada R; Setoguchi Y; Nojima Y
    Evol Comput; 2018; 26(3):411-440. PubMed ID: 29786458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the epsilon-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions.
    Deb K; Mohan M; Mishra S
    Evol Comput; 2005; 13(4):501-25. PubMed ID: 16297281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strength Pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization.
    Elhossini A; Areibi S; Dony R
    Evol Comput; 2010; 18(1):127-56. PubMed ID: 20064026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic generation of controllers for embodied legged organisms: a Pareto evolutionary multi-objective approach.
    Teo J; Abbass HA
    Evol Comput; 2004; 12(3):355-94. PubMed ID: 15355605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Simple and Fast Hypervolume Indicator-Based Multiobjective Evolutionary Algorithm.
    Jiang S; Zhang J; Ong YS; Zhang AN; Tan PS
    IEEE Trans Cybern; 2015 Oct; 45(10):2202-13. PubMed ID: 25474815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covariance matrix adaptation for multi-objective optimization.
    Igel C; Hansen N; Roth S
    Evol Comput; 2007; 15(1):1-28. PubMed ID: 17388777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic diversity as an objective in multi-objective evolutionary algorithms.
    Toffolo A; Benini E
    Evol Comput; 2003; 11(2):151-67. PubMed ID: 12875667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient and accurate solution methodology for bilevel multi-objective programming problems using a hybrid evolutionary-local-search algorithm.
    Deb K; Sinha A
    Evol Comput; 2010; 18(3):403-49. PubMed ID: 20560758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-objective reliability-based optimization with stochastic metamodels.
    Coelho RF; Bouillard P
    Evol Comput; 2011; 19(4):525-60. PubMed ID: 21281119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimodal optimization using a bi-objective evolutionary algorithm.
    Deb K; Saha A
    Evol Comput; 2012; 20(1):27-62. PubMed ID: 21591888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computing gap free Pareto front approximations with stochastic search algorithms.
    Schütze O; Laumanns M; Tantar E; Coello CA; Talbi el-G
    Evol Comput; 2010; 18(1):65-96. PubMed ID: 20064024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Introducing robustness in multi-objective optimization.
    Deb K; Gupta H
    Evol Comput; 2006; 14(4):463-94. PubMed ID: 17109607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A monotonic archive for pareto-coevolution.
    de Jong ED
    Evol Comput; 2007; 15(1):61-93. PubMed ID: 17388779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An orthogonal multi-objective evolutionary algorithm for multi-objective optimization problems with constraints.
    Zeng SY; Kang LS; Ding LX
    Evol Comput; 2004; 12(1):77-98. PubMed ID: 15096306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining convergence and diversity in evolutionary multiobjective optimization.
    Laumanns M; Thiele L; Deb K; Zitzler E
    Evol Comput; 2002; 10(3):263-82. PubMed ID: 12227996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.