BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 20649569)

  • 1. Identification of sites responsible for the potentiating effect of niflumic acid on ClC-Ka kidney chloride channels.
    Zifarelli G; Liantonio A; Gradogna A; Picollo A; Gramegna G; De Bellis M; Murgia AR; Babini E; Camerino DC; Pusch M
    Br J Pharmacol; 2010 Aug; 160(7):1652-61. PubMed ID: 20649569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of interaction of niflumic acid with heterologously expressed kidney CLC-K chloride channels.
    Picollo A; Liantonio A; Babini E; Camerino DC; Pusch M
    J Membr Biol; 2007 Apr; 216(2-3):73-82. PubMed ID: 17659402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting kidney CLC-K channels: pharmacological profile in a human cell line versus Xenopus oocytes.
    Imbrici P; Liantonio A; Gradogna A; Pusch M; Camerino DC
    Biochim Biophys Acta; 2014 Oct; 1838(10):2484-91. PubMed ID: 24863058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A regulatory calcium-binding site at the subunit interface of CLC-K kidney chloride channels.
    Gradogna A; Babini E; Picollo A; Pusch M
    J Gen Physiol; 2010 Sep; 136(3):311-23. PubMed ID: 20805576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Niflumic acid inhibits chloride conductance of rat skeletal muscle by directly inhibiting the CLC-1 channel and by increasing intracellular calcium.
    Liantonio A; Giannuzzi V; Picollo A; Babini E; Pusch M; Conte Camerino D
    Br J Pharmacol; 2007 Jan; 150(2):235-47. PubMed ID: 17128287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Niflumic acid alters gating of HCN2 pacemaker channels by interaction with the outer region of S4 voltage sensing domains.
    Cheng L; Sanguinetti MC
    Mol Pharmacol; 2009 May; 75(5):1210-21. PubMed ID: 19218366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for ether-a-go-go-related gene K+ channel subtype-dependent activation by niflumic acid.
    Fernandez D; Sargent J; Sachse FB; Sanguinetti MC
    Mol Pharmacol; 2008 Apr; 73(4):1159-67. PubMed ID: 18218980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Pharmacology of Kidney and Inner Ear CLC-K Chloride Channels.
    Gradogna A; Pusch M
    Front Pharmacol; 2010; 1():130. PubMed ID: 21833170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation and inhibition of kidney CLC-K chloride channels by fenamates.
    Liantonio A; Picollo A; Babini E; Carbonara G; Fracchiolla G; Loiodice F; Tortorella V; Pusch M; Camerino DC
    Mol Pharmacol; 2006 Jan; 69(1):165-73. PubMed ID: 16244177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissecting a regulatory calcium-binding site of CLC-K kidney chloride channels.
    Gradogna A; Fenollar-Ferrer C; Forrest LR; Pusch M
    J Gen Physiol; 2012 Dec; 140(6):681-96. PubMed ID: 23148261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping ligand binding pockets in chloride ClC-1 channels through an integrated in silico and experimental approach using anthracene-9-carboxylic acid and niflumic acid.
    Altamura C; Mangiatordi GF; Nicolotti O; Sahbani D; Farinato A; Leonetti F; Carratù MR; Conte D; Desaphy JF; Imbrici P
    Br J Pharmacol; 2018 May; 175(10):1770-1780. PubMed ID: 29500929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of Slo2.1 channels by niflumic acid.
    Dai L; Garg V; Sanguinetti MC
    J Gen Physiol; 2010 Mar; 135(3):275-95. PubMed ID: 20176855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. I-J loop involvement in the pharmacological profile of CLC-K channels expressed in Xenopus oocytes.
    Gradogna A; Imbrici P; Zifarelli G; Liantonio A; Camerino DC; Pusch M
    Biochim Biophys Acta; 2014 Nov; 1838(11):2745-56. PubMed ID: 25073071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Insights into the Mechanism of NO
    Lagostena L; Zifarelli G; Picollo A
    J Am Soc Nephrol; 2019 Feb; 30(2):293-302. PubMed ID: 30635372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular switch for CLC-K Cl- channel block/activation: optimal pharmacophoric requirements towards high-affinity ligands.
    Liantonio A; Picollo A; Carbonara G; Fracchiolla G; Tortorella P; Loiodice F; Laghezza A; Babini E; Zifarelli G; Pusch M; Camerino DC
    Proc Natl Acad Sci U S A; 2008 Jan; 105(4):1369-73. PubMed ID: 18216243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A selective class of inhibitors for the CLC-Ka chloride ion channel.
    Koster AK; Wood CAP; Thomas-Tran R; Chavan TS; Almqvist J; Choi KH; Du Bois J; Maduke M
    Proc Natl Acad Sci U S A; 2018 May; 115(21):E4900-E4909. PubMed ID: 29669921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of renal ClC-K chloride channels depends on an intact N terminus of their accessory subunit barttin.
    Wojciechowski D; Thiemann S; Schaal C; Rahtz A; de la Roche J; Begemann B; Becher T; Fischer M
    J Biol Chem; 2018 Jun; 293(22):8626-8637. PubMed ID: 29674316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of chloride channels in the regulation of corpus cavernosum tone: a potential therapeutic target for erectile dysfunction.
    Chu LL; Adaikan PG
    J Sex Med; 2008 Apr; 5(4):813-821. PubMed ID: 18194185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaperone activity of niflumic acid on ClC-1 chloride channel mutants causing myotonia congenita.
    Altamura C; Conte E; Campanale C; Laghetti P; Saltarella I; Camerino GM; Imbrici P; Desaphy JF
    Front Pharmacol; 2022; 13():958196. PubMed ID: 36034862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular determinants of differential pore blocking of kidney CLC-K chloride channels.
    Picollo A; Liantonio A; Didonna MP; Elia L; Camerino DC; Pusch M
    EMBO Rep; 2004 Jun; 5(6):584-9. PubMed ID: 15167890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.