These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 20649847)

  • 1. Larger inhibition of visual pigment kinase in cones than in rods.
    Arinobu D; Tachibanaki S; Kawamura S
    J Neurochem; 2010 Oct; 115(1):259-68. PubMed ID: 20649847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of visual pigment kinase-related genes in carp retina: polyphyly in GRK1 subtypes, GRK1A and 1B.
    Shimauchi-Matsukawa Y; Aman Y; Tachibanaki S; Kawamura S
    Mol Vis; 2005 Dec; 11():1220-8. PubMed ID: 16402022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Species-specific differences in expression of G-protein-coupled receptor kinase (GRK) 7 and GRK1 in mammalian cone photoreceptor cells: implications for cone cell phototransduction.
    Weiss ER; Ducceschi MH; Horner TJ; Li A; Craft CM; Osawa S
    J Neurosci; 2001 Dec; 21(23):9175-84. PubMed ID: 11717351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly effective phosphorylation by G protein-coupled receptor kinase 7 of light-activated visual pigment in cones.
    Tachibanaki S; Arinobu D; Shimauchi-Matsukawa Y; Tsushima S; Kawamura S
    Proc Natl Acad Sci U S A; 2005 Jun; 102(26):9329-34. PubMed ID: 15958532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid residues in GRK1/GRK7 responsible for interaction with S-modulin/recoverin.
    Torisawa A; Arinobu D; Tachibanaki S; Kawamura S
    Photochem Photobiol; 2008; 84(4):823-30. PubMed ID: 18266817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grk7 but not Grk1 undergoes cAMP-dependent phosphorylation in zebrafish cone photoreceptors and mediates cone photoresponse recovery to elevated cAMP.
    Chrispell JD; Xiong Y; Weiss ER
    J Biol Chem; 2022 Dec; 298(12):102636. PubMed ID: 36273582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cone deactivation kinetics and GRK1/GRK7 expression in enhanced S cone syndrome caused by mutations in NR2E3.
    Cideciyan AV; Jacobson SG; Gupta N; Osawa S; Locke KG; Weiss ER; Wright AF; Birch DG; Milam AH
    Invest Ophthalmol Vis Sci; 2003 Mar; 44(3):1268-74. PubMed ID: 12601058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanisms characterizing cone photoresponses.
    Tachibanaki S; Shimauchi-Matsukawa Y; Arinobu D; Kawamura S
    Photochem Photobiol; 2007; 83(1):19-26. PubMed ID: 16706600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GRK1 and GRK7: unique cellular distribution and widely different activities of opsin phosphorylation in the zebrafish rods and cones.
    Wada Y; Sugiyama J; Okano T; Fukada Y
    J Neurochem; 2006 Aug; 98(3):824-37. PubMed ID: 16787417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of human GRK7 as a potential cone opsin kinase.
    Chen CK; Zhang K; Church-Kopish J; Huang W; Zhang H; Chen YJ; Frederick JM; Baehr W
    Mol Vis; 2001 Dec; 7():305-13. PubMed ID: 11754336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the methylation status of G protein-coupled receptor kinase 1 (rhodopsin kinase).
    Kutuzov MA; Andreeva AV; Bennett N
    Cell Signal; 2012 Dec; 24(12):2259-67. PubMed ID: 22846544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ectopic expression of cone-specific G-protein-coupled receptor kinase GRK7 in zebrafish rods leads to lower photosensitivity and altered responses.
    Vogalis F; Shiraki T; Kojima D; Wada Y; Nishiwaki Y; Jarvinen JL; Sugiyama J; Kawakami K; Masai I; Kawamura S; Fukada Y; Lamb TD
    J Physiol; 2011 May; 589(Pt 9):2321-48. PubMed ID: 21486791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connexin 36 in photoreceptor cells: studies on transgenic rod-less and cone-less mouse retinas.
    Dang L; Pulukuri S; Mears AJ; Swaroop A; Reese BE; Sitaramayya A
    Mol Vis; 2004 May; 10():323-7. PubMed ID: 15152186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature dependence of dark-adapted sensitivity and light-adaptation in photoreceptors with A1 visual pigments: a comparison of frog L-cones and rods.
    Heikkinen H; Nymark S; Donner K; Koskelainen A
    Vision Res; 2009 Jul; 49(14):1717-28. PubMed ID: 19348836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation-independent suppression of light-activated visual pigment by arrestin in carp rods and cones.
    Tomizuka J; Tachibanaki S; Kawamura S
    J Biol Chem; 2015 Apr; 290(15):9399-411. PubMed ID: 25713141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of mammalian cone phototransduction by recoverin and rhodopsin kinase.
    Sakurai K; Chen J; Khani SC; Kefalov VJ
    J Biol Chem; 2015 Apr; 290(14):9239-50. PubMed ID: 25673692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of rhodopsin kinase regulation by recoverin.
    Komolov KE; Senin II; Kovaleva NA; Christoph MP; Churumova VA; Grigoriev II; Akhtar M; Philippov PP; Koch KW
    J Neurochem; 2009 Jul; 110(1):72-9. PubMed ID: 19457073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Function of the calcium-binding protein p26 (recoverin) in bovine retinal rods].
    Gorodovikova EN; Filippov PP
    Biokhimiia; 1994 Apr; 59(4):582-8. PubMed ID: 7912552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodopsin phosphorylation as a mechanism of cyclic GMP phosphodiesterase regulation by S-modulin.
    Kawamura S
    Nature; 1993 Apr; 362(6423):855-7. PubMed ID: 8386803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low amplification and fast visual pigment phosphorylation as mechanisms characterizing cone photoresponses.
    Tachibanaki S; Tsushima S; Kawamura S
    Proc Natl Acad Sci U S A; 2001 Nov; 98(24):14044-9. PubMed ID: 11707584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.