These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 20650283)

  • 1. Numerical investigation of the aerodynamic characteristics of a hovering Coleopteran insect.
    Le TQ; Byun D; Saputra P; Ko JH; Park HC; Kim M
    J Theor Biol; 2010 Oct; 266(4):485-95. PubMed ID: 20650283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of flexibility on the aerodynamic performance of a hovering wing.
    Vanella M; Fitzgerald T; Preidikman S; Balaras E; Balachandran B
    J Exp Biol; 2009 Jan; 212(Pt 1):95-105. PubMed ID: 19088215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The aerodynamics of hovering flight in Drosophila.
    Fry SN; Sayaman R; Dickinson MH
    J Exp Biol; 2005 Jun; 208(Pt 12):2303-18. PubMed ID: 15939772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes.
    Park H; Choi H
    Bioinspir Biomim; 2012 Mar; 7(1):016008. PubMed ID: 22278952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system.
    Truong QT; Nguyen QV; Truong VT; Park HC; Byun DY; Goo NS
    Bioinspir Biomim; 2011 Sep; 6(3):036008. PubMed ID: 21865627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect.
    Van Truong T; Byun D; Kim MJ; Yoon KJ; Park HC
    Bioinspir Biomim; 2013 Sep; 8(3):036007. PubMed ID: 23851351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerodynamic effects of corrugation in flapping insect wings in hovering flight.
    Meng XG; Xu L; Sun M
    J Exp Biol; 2011 Feb; 214(Pt 3):432-44. PubMed ID: 21228202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power distribution in the hovering flight of the hawk moth Manduca sexta.
    Zhao L; Deng X
    Bioinspir Biomim; 2009 Dec; 4(4):046003. PubMed ID: 19920311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings.
    Maybury WJ; Lehmann FO
    J Exp Biol; 2004 Dec; 207(Pt 26):4707-26. PubMed ID: 15579564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wing kinematics measurement and aerodynamics of hovering droneflies.
    Liu Y; Sun M
    J Exp Biol; 2008 Jul; 211(Pt 13):2014-25. PubMed ID: 18552290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerodynamic effects of corrugation and deformation in flapping wings of hovering hoverflies.
    Du G; Sun M
    J Theor Biol; 2012 May; 300():19-28. PubMed ID: 22266123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight.
    Wang JK; Sun M
    J Exp Biol; 2005 Oct; 208(Pt 19):3785-804. PubMed ID: 16169955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hovering of model insects: simulation by coupling equations of motion with Navier-Stokes equations.
    Wu JH; Zhang YL; Sun M
    J Exp Biol; 2009 Oct; 212(Pt 20):3313-29. PubMed ID: 19801436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of drag in insect hovering.
    Wang ZJ
    J Exp Biol; 2004 Nov; 207(Pt 23):4147-55. PubMed ID: 15498960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near- and far-field aerodynamics in insect hovering flight: an integrated computational study.
    Aono H; Liang F; Liu H
    J Exp Biol; 2008 Jan; 211(Pt 2):239-57. PubMed ID: 18165252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotational accelerations stabilize leading edge vortices on revolving fly wings.
    Lentink D; Dickinson MH
    J Exp Biol; 2009 Aug; 212(Pt 16):2705-19. PubMed ID: 19648415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings.
    Lehmann FO; Pick S
    J Exp Biol; 2007 Apr; 210(Pt 8):1362-77. PubMed ID: 17401119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings.
    Zhao L; Deng X; Sane SP
    Bioinspir Biomim; 2011 Sep; 6(3):036007. PubMed ID: 21852729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inertia may limit efficiency of slow flapping flight, but mayflies show a strategy for reducing the power requirements of loiter.
    Usherwood JR
    Bioinspir Biomim; 2009 Mar; 4(1):015003. PubMed ID: 19258692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The aerodynamic effects of wing-wing interaction in flapping insect wings.
    Lehmann FO; Sane SP; Dickinson M
    J Exp Biol; 2005 Aug; 208(Pt 16):3075-92. PubMed ID: 16081606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.