These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 2065064)

  • 1. The role of electrostatic forces in the interaction between the membrane and cytoskeleton of human erythrocytes.
    Kahana E; Streichman S; Silver BL
    Biochim Biophys Acta; 1991 Jul; 1066(1):1-5. PubMed ID: 2065064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of divalent cations with human red cell cytoskeletons.
    Beaven GH; Gratzer WB
    Biochim Biophys Acta; 1980 Jul; 600(1):140-9. PubMed ID: 7397165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium regulation of magnesium dependent phosphorylation of human erythrocyte ghost spectrin.
    Pant HC; Virmani M
    Physiol Chem Phys Med NMR; 1984; 16(4):283-91. PubMed ID: 6097925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane skeleton-bilayer interaction is not the major determinant of membrane phospholipid asymmetry in human erythrocytes.
    Gudi SR; Kumar A; Bhakuni V; Gokhale SM; Gupta CM
    Biochim Biophys Acta; 1990 Mar; 1023(1):63-72. PubMed ID: 2317498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The effect of membrane-bound calcium on the activity of adenosine triphosphatase from erythrocytes and erythrocyte permeability for monovalent cations].
    Orlov SN; Shevchenko AS
    Biokhimiia; 1978 Feb; 43(2):208-15. PubMed ID: 148300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The molecular basis for membrane - cytoskeleton association in human erythrocytes.
    Bennett V
    J Cell Biochem; 1982; 18(1):49-65. PubMed ID: 6461664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interaction of spectrin - actin and synthetic phospholipids.
    Mombers C; van Dijck PW; van Deenen LL; de Gier J; Verkleij AJ
    Biochim Biophys Acta; 1977 Oct; 470(2):152-60. PubMed ID: 911826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of calmodulin with the red cell and its membrane skeleton and with spectrin.
    Burns NR; Gratzer WB
    Biochemistry; 1985 Jun; 24(12):3070-4. PubMed ID: 4016086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insulin inhibits the phosphorylation of the membrane cytoskeletal protein spectrin in pig erythrocytes.
    Hesketh JE
    Cell Biol Int Rep; 1986 Aug; 10(8):623-9. PubMed ID: 3530509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of monovalent ions on the activity of the (Ca2+ + Mg2+)-ATPase and Ca2+ -transport of human red blood cells.
    Wierichs R; Bader H
    Biochim Biophys Acta; 1980 Feb; 596(2):325-8. PubMed ID: 6101964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The formation of vesicles retaining sodium-dependent transport systems for amino acids from protein-depleted membranes of pigeon erythrocytes.
    Watts C; Wheeler KP
    Biochim Biophys Acta; 1980 Nov; 602(2):460-6. PubMed ID: 7426657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diminished spectrin extraction from ATP-depleted human erythrocytes. Evidence relating spectrin to changes in erythrocyte shape and deformability.
    Lux SE; John KM; Ukena TE
    J Clin Invest; 1978 Mar; 61(3):815-27. PubMed ID: 25286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hereditary spherocytosis of man. Altered binding of cytoskeletal components to the erythrocyte membrane.
    Hill JS; Sawyer WH; Howlett GJ; Wiley JS
    Biochem J; 1982 Feb; 201(2):259-66. PubMed ID: 7082289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A spin labeling study of the effects of inorganic ions and pH on the conformation of spectrin.
    Lammel B; Maier G
    Biochim Biophys Acta; 1980 Apr; 622(2):245-58. PubMed ID: 6246959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hereditary spherocytosis of man. Defective cytoskeletal interactions in the erythrocyte membrane.
    Sawyer WH; Hill JS; Howlett GJ; Wiley JS
    Biochem J; 1983 May; 211(2):349-56. PubMed ID: 6870835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 23Na multiple-quantum-filtered NMR study of the effect of the cytoskeleton conformation on the anisotropic motion of sodium ions in red blood cells.
    Knubovets T; Shinar H; Eliav U; Navon G
    J Magn Reson B; 1996 Jan; 110(1):16-25. PubMed ID: 8556235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in the concentration of ions during senescence of the human erythrocyte.
    Cameron IL; Hardman WE; Smith NK; Fullerton GD; Miseta A
    Cell Biol Int; 1993 Jan; 17(1):93-8. PubMed ID: 8495231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Curling and local shape changes of red blood cell membranes driven by cytoskeletal reorganization.
    Kabaso D; Shlomovitz R; Auth T; Lew VL; Gov NS
    Biophys J; 2010 Aug; 99(3):808-16. PubMed ID: 20682258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of resealing ability in erythrocyte membranes. Effect of divalent cations and spectrin release.
    Johnson RM; Kirkwood DH
    Biochim Biophys Acta; 1978 May; 509(1):58-66. PubMed ID: 647009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple spectroscopic method for studying erythrocyte ghost resealing.
    Kahana E; Streichman S; Silver BL
    Biochim Biophys Acta; 1991 Jul; 1066(1):6-8. PubMed ID: 1648394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.