These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 20650900)

  • 1. Both forward and reverse TCA cycles operate in green sulfur bacteria.
    Tang KH; Blankenship RE
    J Biol Chem; 2010 Nov; 285(46):35848-54. PubMed ID: 20650900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic flux analysis of the mixotrophic metabolisms in the green sulfur bacterium Chlorobaculum tepidum.
    Feng X; Tang KH; Blankenship RE; Tang YJ
    J Biol Chem; 2010 Dec; 285(50):39544-50. PubMed ID: 20937805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High CO
    Steffens L; Pettinato E; Steiner TM; Mall A; König S; Eisenreich W; Berg IA
    Nature; 2021 Apr; 592(7856):784-788. PubMed ID: 33883741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A phylogenetic approach to the early evolution of autotrophy: the case of the reverse TCA and the reductive acetyl-CoA pathways.
    Becerra A; Rivas M; García-Ferris C; Lazcano A; Peretó J
    Int Microbiol; 2014 Jun; 17(2):91-7. PubMed ID: 26418853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autotrophic CO2 fixation via the reductive tricarboxylic acid cycle in different lineages within the phylum Aquificae: evidence for two ways of citrate cleavage.
    Hügler M; Huber H; Molyneaux SJ; Vetriani C; Sievert SM
    Environ Microbiol; 2007 Jan; 9(1):81-92. PubMed ID: 17227414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathway identification combining metabolic flux and functional genomics analyses: acetate and propionate activation by Corynebacterium glutamicum.
    Veit A; Rittmann D; Georgi T; Youn JW; Eikmanns BJ; Wendisch VF
    J Biotechnol; 2009 Mar; 140(1-2):75-83. PubMed ID: 19162097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presence of acetyl coenzyme A (CoA) carboxylase and propionyl-CoA carboxylase in autotrophic Crenarchaeota and indication for operation of a 3-hydroxypropionate cycle in autotrophic carbon fixation.
    Menendez C; Bauer Z; Huber H; Gad'on N; Stetter KO; Fuchs G
    J Bacteriol; 1999 Feb; 181(4):1088-98. PubMed ID: 9973333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Metabolic Rewiring Enables Efficient Acetyl Coenzyme A Assimilation in Paracoccus denitrificans.
    Kremer K; van Teeseling MCF; Schada von Borzyskowski L; Bernhardsgrütter I; van Spanning RJM; Gates AJ; Remus-Emsermann MNP; Thanbichler M; Erb TJ
    mBio; 2019 Jul; 10(4):. PubMed ID: 31289174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The reductive tricarboxylic acid cycle of carbon dioxide assimilation: initial studies and purification of ATP-citrate lyase from the green sulfur bacterium Chlorobium tepidum.
    Wahlund TM; Tabita FR
    J Bacteriol; 1997 Aug; 179(15):4859-67. PubMed ID: 9244275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon flux through citric acid cycle pathways in perfused heart by 13C NMR spectroscopy.
    Malloy CR; Sherry AD; Jeffrey FM
    FEBS Lett; 1987 Feb; 212(1):58-62. PubMed ID: 2879743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autotrophic CO(2) fixation by Chloroflexus aurantiacus: study of glyoxylate formation and assimilation via the 3-hydroxypropionate cycle.
    Herter S; Farfsing J; Gad'On N; Rieder C; Eisenreich W; Bacher A; Fuchs G
    J Bacteriol; 2001 Jul; 183(14):4305-16. PubMed ID: 11418572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon flow of heliobacteria is related more to clostridia than to the green sulfur bacteria.
    Tang KH; Feng X; Zhuang WQ; Alvarez-Cohen L; Blankenship RE; Tang YJ
    J Biol Chem; 2010 Nov; 285(45):35104-12. PubMed ID: 20807773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic and electron paramagnetic resonance studies of anabolic pyruvate synthesis by pyruvate: ferredoxin oxidoreductase from Hydrogenobacter thermophilus.
    Ikeda T; Yamamoto M; Arai H; Ohmori D; Ishii M; Igarashi Y
    FEBS J; 2010 Jan; 277(2):501-10. PubMed ID: 20015072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A reverse KREBS cycle in photosynthesis: consensus at last.
    Buchanan BB; Arnon DI
    Photosynth Res; 1990; 24():47-53. PubMed ID: 11540925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Citric acid cycle in the hyperthermophilic archaeon Pyrobaculum islandicum grown autotrophically, heterotrophically, and mixotrophically with acetate.
    Hu Y; Holden JF
    J Bacteriol; 2006 Jun; 188(12):4350-5. PubMed ID: 16740941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP-citrate lyase is required for production of cytosolic acetyl coenzyme A and development in Aspergillus nidulans.
    Hynes MJ; Murray SL
    Eukaryot Cell; 2010 Jul; 9(7):1039-48. PubMed ID: 20495057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unfamiliar metabolic links in the central carbon metabolism.
    Fuchs G; Berg IA
    J Biotechnol; 2014 Dec; 192 Pt B():314-22. PubMed ID: 24576434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Both subunits of ATP-citrate lyase from Chlorobium tepidum contribute to catalytic activity.
    Kim W; Tabita FR
    J Bacteriol; 2006 Sep; 188(18):6544-52. PubMed ID: 16952946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into the autotrophic CO2 fixation pathway of the archaeon Ignicoccus hospitalis: comprehensive analysis of the central carbon metabolism.
    Jahn U; Huber H; Eisenreich W; Hügler M; Fuchs G
    J Bacteriol; 2007 Jun; 189(11):4108-19. PubMed ID: 17400748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. c-Myc programs fatty acid metabolism and dictates acetyl-CoA abundance and fate.
    Edmunds LR; Sharma L; Kang A; Lu J; Vockley J; Basu S; Uppala R; Goetzman ES; Beck ME; Scott D; Prochownik EV
    J Biol Chem; 2014 Sep; 289(36):25382-92. PubMed ID: 25053415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.