BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

704 related articles for article (PubMed ID: 20651687)

  • 21. Laterally extended atomically precise graphene nanoribbons with improved electrical conductivity for efficient gas sensing.
    Mehdi Pour M; Lashkov A; Radocea A; Liu X; Sun T; Lipatov A; Korlacki RA; Shekhirev M; Aluru NR; Lyding JW; Sysoev V; Sinitskii A
    Nat Commun; 2017 Oct; 8(1):820. PubMed ID: 29018185
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atomic structure of epitaxial graphene sidewall nanoribbons: flat graphene, miniribbons, and the confinement gap.
    Palacio I; Celis A; Nair MN; Gloter A; Zobelli A; Sicot M; Malterre D; Nevius MS; de Heer WA; Berger C; Conrad EH; Taleb-Ibrahimi A; Tejeda A
    Nano Lett; 2015 Jan; 15(1):182-9. PubMed ID: 25457853
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Voltage-dependent conductance of a single graphene nanoribbon.
    Koch M; Ample F; Joachim C; Grill L
    Nat Nanotechnol; 2012 Nov; 7(11):713-7. PubMed ID: 23064554
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Graphene nanoribbons initiated from molecularly derived seeds.
    Way AJ; Jacobberger RM; Guisinger NP; Saraswat V; Zheng X; Suresh A; Dwyer JH; Gopalan P; Arnold MS
    Nat Commun; 2022 May; 13(1):2992. PubMed ID: 35637229
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantum phase transitions and topological proximity effects in graphene nanoribbon heterostructures.
    Zhang G; Li X; Wu G; Wang J; Culcer D; Kaxiras E; Zhang Z
    Nanoscale; 2014 Mar; 6(6):3259-67. PubMed ID: 24509485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantum Dots in Graphene Nanoribbons.
    Wang S; Kharche N; Costa Girão E; Feng X; Müllen K; Meunier V; Fasel R; Ruffieux P
    Nano Lett; 2017 Jul; 17(7):4277-4283. PubMed ID: 28603996
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Narrow graphene nanoribbons from carbon nanotubes.
    Jiao L; Zhang L; Wang X; Diankov G; Dai H
    Nature; 2009 Apr; 458(7240):877-80. PubMed ID: 19370031
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deposition, characterization, and thin-film-based chemical sensing of ultra-long chemically synthesized graphene nanoribbons.
    Abbas AN; Liu G; Narita A; Orosco M; Feng X; Müllen K; Zhou C
    J Am Chem Soc; 2014 May; 136(21):7555-8. PubMed ID: 24831246
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Graphene Nanoribbons: On-Surface Synthesis and Integration into Electronic Devices.
    Chen Z; Narita A; Müllen K
    Adv Mater; 2020 Nov; 32(45):e2001893. PubMed ID: 32945038
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes.
    Parashar UK; Bhandari S; Srivastava RK; Jariwala D; Srivastava A
    Nanoscale; 2011 Sep; 3(9):3876-82. PubMed ID: 21842103
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electron-tunneling modulation in percolating network of graphene quantum dots: fabrication, phenomenological understanding, and humidity/pressure sensing applications.
    Sreeprasad TS; Rodriguez AA; Colston J; Graham A; Shishkin E; Pallem V; Berry V
    Nano Lett; 2013 Apr; 13(4):1757-63. PubMed ID: 23506081
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons.
    Sevinçli H; Sevik C; Caın T; Cuniberti G
    Sci Rep; 2013; 3():1228. PubMed ID: 23390578
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sharpening the chemical scissors to unzip carbon nanotubes: crystalline graphene nanoribbons.
    Terrones M
    ACS Nano; 2010 Apr; 4(4):1775-81. PubMed ID: 20420468
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On-Surface Synthesis of Atomically Precise Graphene Nanoribbons.
    Talirz L; Ruffieux P; Fasel R
    Adv Mater; 2016 Aug; 28(29):6222-31. PubMed ID: 26867990
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions.
    Li XF; Wang LL; Chen KQ; Luo Y
    J Phys Condens Matter; 2012 Mar; 24(9):095801. PubMed ID: 22317831
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Large intrinsic energy bandgaps in annealed nanotube-derived graphene nanoribbons.
    Shimizu T; Haruyama J; Marcano DC; Kosinkin DV; Tour JM; Hirose K; Suenaga K
    Nat Nanotechnol; 2011 Jan; 6(1):45-50. PubMed ID: 21170040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Large-scale solution synthesis of narrow graphene nanoribbons.
    Vo TH; Shekhirev M; Kunkel DA; Morton MD; Berglund E; Kong L; Wilson PM; Dowben PA; Enders A; Sinitskii A
    Nat Commun; 2014; 5():3189. PubMed ID: 24510014
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes.
    Treier M; Pignedoli CA; Laino T; Rieger R; Müllen K; Passerone D; Fasel R
    Nat Chem; 2011 Jan; 3(1):61-7. PubMed ID: 21160519
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electronic states of graphene nanoribbons and analytical solutions.
    Wakabayashi K; Sasaki KI; Nakanishi T; Enoki T
    Sci Technol Adv Mater; 2010 Oct; 11(5):054504. PubMed ID: 27877361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.