These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 20651807)

  • 41. Fabrication and characterization of nanopore array.
    Fu Y; Bryan NK; Fatt LT
    J Nanosci Nanotechnol; 2006 Jul; 6(7):1954-60. PubMed ID: 17025108
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Detection and Separation of Single-Stranded DNA Fragments Using Solid-State Nanopores.
    Zhan L; Zhang Y; Si W; Sha J; Chen Y
    J Phys Chem Lett; 2021 Jul; 12(28):6469-6477. PubMed ID: 34240883
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Oxidation of nanopores in a silicon membrane: self-limiting formation of sub-10 nm circular openings.
    Zhang M; Schmidt T; Sangghaleh F; Roxhed N; Sychugov I; Linnros J
    Nanotechnology; 2014 Sep; 25(35):355302. PubMed ID: 25116147
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Slowing DNA translocation through a nanopore using a functionalized electrode.
    Krishnakumar P; Gyarfas B; Song W; Sen S; Zhang P; Krstić P; Lindsay S
    ACS Nano; 2013 Nov; 7(11):10319-26. PubMed ID: 24161197
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lithography-free formation of nanopores in plastic membranes using laser heating.
    Wu S; Park SR; Ling XS
    Nano Lett; 2006 Nov; 6(11):2571-6. PubMed ID: 17090093
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced translocation of single DNA molecules through alpha-hemolysin nanopores by manipulation of internal charge.
    Maglia G; Restrepo MR; Mikhailova E; Bayley H
    Proc Natl Acad Sci U S A; 2008 Dec; 105(50):19720-5. PubMed ID: 19060213
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Self-assembly of supramolecular triarylamine nanowires in mesoporous silica and biocompatible electrodes thereof.
    Licsandru ED; Schneider S; Tingry S; Ellis T; Moulin E; Maaloum M; Lehn JM; Barboiu M; Giuseppone N
    Nanoscale; 2016 Mar; 8(10):5605-11. PubMed ID: 26892311
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fabrication of nanopores in a 100-nm thick Si3N4 membrane.
    Chungt JH; Chen X; Zimney EJ; Ruoff RS
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2175-81. PubMed ID: 17025145
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fabrication of a one-dimensional array of nanopores horizontally aligned on a Si substrate.
    Zhang H; Chen Z; Li T; Saito K
    J Nanosci Nanotechnol; 2005 Oct; 5(10):1745-8. PubMed ID: 16245540
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Engineering adjustable two-pore devices for parallel ion transport and DNA translocations.
    Chou YC; Chen J; Lin CY; Drndić M
    J Chem Phys; 2021 Mar; 154(10):105102. PubMed ID: 33722020
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biosensing with conically shaped nanopores and nanotubes.
    Choi Y; Baker LA; Hillebrenner H; Martin CR
    Phys Chem Chem Phys; 2006 Nov; 8(43):4976-88. PubMed ID: 17091150
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Deceleration of single-stranded DNA passing through a nanopore using a nanometre-sized bead structure.
    Goto Y; Haga T; Yanagi I; Yokoi T; Takeda K
    Sci Rep; 2015 Nov; 5():16640. PubMed ID: 26559466
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Integrating Sub-3 nm Plasmonic Gaps into Solid-State Nanopores.
    Shi X; Verschueren D; Pud S; Dekker C
    Small; 2018 May; 14(18):e1703307. PubMed ID: 29251411
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient.
    Wanunu M; Morrison W; Rabin Y; Grosberg AY; Meller A
    Nat Nanotechnol; 2010 Feb; 5(2):160-5. PubMed ID: 20023645
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Detection of short single-strand DNA homopolymers with ultrathin Si3N4 nanopores.
    Ma J; Qiu Y; Yuan Z; Zhang Y; Sha J; Liu L; Sun L; Ni Z; Yi H; Li D; Chen Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022719. PubMed ID: 26382444
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interpreting the conductance blockades of DNA translocations through solid-state nanopores.
    Carlsen AT; Zahid OK; Ruzicka J; Taylor EW; Hall AR
    ACS Nano; 2014 May; 8(5):4754-60. PubMed ID: 24758739
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Visualization of Diffusion within Nanoarrays.
    Liu Y; Holzinger A; Knittel P; Poltorak L; Gamero-Quijano A; Rickard WD; Walcarius A; Herzog G; Kranz C; Arrigan DW
    Anal Chem; 2016 Jul; 88(13):6689-95. PubMed ID: 27264360
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Revealing the mechanism of DNA passing through graphene and boron nitride nanopores.
    Tyagi A; Chu K; Hossain MD; Abidi IH; Lin W; Yan Y; Zhang K; Luo Z
    Nanoscale; 2019 Dec; 11(48):23438-23448. PubMed ID: 31799536
    [TBL] [Abstract][Full Text] [Related]  

  • 59. DNA translocation through graphene nanopores.
    Schneider GF; Kowalczyk SW; Calado VE; Pandraud G; Zandbergen HW; Vandersypen LM; Dekker C
    Nano Lett; 2010 Aug; 10(8):3163-7. PubMed ID: 20608744
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Resistive-pulse detection of short dsDNAs using a chemically functionalized conical nanopore sensor.
    Kececi K; Sexton LT; Buyukserin F; Martin CR
    Nanomedicine (Lond); 2008 Dec; 3(6):787-96. PubMed ID: 19025453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.