These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 2065185)

  • 1. Relaxation dynamics of the gel to liquid-crystalline transition of phosphatidylcholine bilayers. Effects of chainlength and vesicle size.
    van Osdol WW; Johnson ML; Ye Q; Biltonen RL
    Biophys J; 1991 Apr; 59(4):775-85. PubMed ID: 2065185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gel-liquid crystalline transition of some multilamellar lipid bilayers follows classical kinetics with a fractional dimensionality of approximately two.
    Ye Q; van Osdol WW; Biltonen RL
    Biophys J; 1991 Nov; 60(5):1002-7. PubMed ID: 1760499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependence of the repulsive pressure between phosphatidylcholine bilayers.
    Simon SA; Advani S; McIntosh TJ
    Biophys J; 1995 Oct; 69(4):1473-83. PubMed ID: 8534818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the anesthetic dibucaine on the kinetics of the gel-liquid crystalline transition of dipalmitoylphosphatidylcholine multilamellar vesicles.
    van Osdol WW; Ye Q; Johnson ML; Biltonen RL
    Biophys J; 1992 Oct; 63(4):1011-7. PubMed ID: 1420921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physicochemical characterization of 1,2-diphytanoyl-sn-glycero-3-phosphocholine in model membrane systems.
    Lindsey H; Petersen NO; Chan SI
    Biochim Biophys Acta; 1979 Jul; 555(1):147-67. PubMed ID: 476096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and thermotropic properties of 1-stearoyl-2-acetyl-phosphatidylcholine bilayer membranes.
    Shah J; Duclos RI; Shipley GG
    Biophys J; 1994 May; 66(5):1469-78. PubMed ID: 8061196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of lamellarity and size on calorimetric phase transitions in single component phosphatidylcholine vesicles.
    Drazenovic J; Wang H; Roth K; Zhang J; Ahmed S; Chen Y; Bothun G; Wunder SL
    Biochim Biophys Acta; 2015 Feb; 1848(2):532-43. PubMed ID: 25445167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of hydrostatic pressure on bilayer phase behavior and dynamics of dilauroylphosphatidylcholine.
    Bonev B; Morrow MR
    Biophys J; 1996 Jun; 70(6):2727-35. PubMed ID: 8744310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of cholesterol with galactocerebroside and galactocerebroside-phosphatidylcholine bilayer membranes.
    Ruocco MJ; Shipley GG
    Biophys J; 1984 Dec; 46(6):695-707. PubMed ID: 6518252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency spectrum of enthalpy fluctuations associated with macromolecular transitions.
    Mayorga OL; van Osdol WW; Lacomba JL; Freire E
    Proc Natl Acad Sci U S A; 1988 Dec; 85(24):9514-8. PubMed ID: 3200836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic investigations on the phase transition of phospholipid bilayers.
    Gruenewald B; Blume A; Watanabe F
    Biochim Biophys Acta; 1980 Mar; 597(1):41-52. PubMed ID: 7370246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study of an adenosine triphosphatase trigger-fused lipid vesicle and other vesicle forms of dimyristoylphosphatidylcholine.
    Dufour JP; Nunnally R; Buhle L; Tsong TY
    Biochemistry; 1981 Sep; 20(19):5576-86. PubMed ID: 6457634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the interaction of an alpha-helical transmembrane peptide with phosphatidylcholine bilayer membranes by means of densimetry and ultrasound velocimetry.
    Rybar P; Krivanek R; Samuely T; Lewis RN; McElhaney RN; Hianik T
    Biochim Biophys Acta; 2007 Jun; 1768(6):1466-78. PubMed ID: 17462583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of pressure-modulated differential scanning calorimetry to the determination of relaxation kinetics of multilamellar lipid vesicles.
    Boehm K; Guddorf J; Hinz HJ
    Biophys Chem; 2007 Mar; 126(1-3):218-27. PubMed ID: 16831505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the chainlength dependence of lipid phase transition temperatures: main and pretransitions of phosphatidylcholines; main and non-lamellar transitions of phosphatidylethanolamines.
    Marsh D
    Biochim Biophys Acta; 1991 Feb; 1062(1):1-6. PubMed ID: 1998701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray kinematography of phase transformations of three-component lipid mixtures: a time-resolved synchrotron X-ray scattering study using the pressure-jump relaxation technique.
    Jeworrek C; Pühse M; Winter R
    Langmuir; 2008 Oct; 24(20):11851-9. PubMed ID: 18767826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogels from phospholipid vesicles.
    Gräbner D; Hoffmann H; Förster S; Rosenfeldt S; Linders J; Mayer C; Talmon Y; Schmidt J
    Adv Colloid Interface Sci; 2014 Jun; 208():252-63. PubMed ID: 24690546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of vesicle size on the prodan fluorescence in diheptadecanoylphosphatidylcholine bilayer membrane under atmospheric and high pressures.
    Goto M; Sawaguchi H; Tamai N; Matsuki H; Kaneshina S
    Langmuir; 2010 Aug; 26(16):13377-84. PubMed ID: 20695581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magic-angle spinning NMR studies of molecular organization in multibilayers formed by 1-octadecanoyl-2-decanoyl-sn-glycero-3-phosphocholine.
    Halladay HN; Stark RE; Ali S; Bittman R
    Biophys J; 1990 Dec; 58(6):1449-61. PubMed ID: 2275962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition of a liquid crystalline phosphatidylcholine bilayer to the gel phase in a vesicle reduces the internal aqueous volume.
    Lichtenberg D; Felgner PL; Thompson TE
    Biochim Biophys Acta; 1982 Jan; 684(2):277-81. PubMed ID: 6895700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.