BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 20652021)

  • 1. A bacterial Ras-like small GTP-binding protein and its cognate GAP establish a dynamic spatial polarity axis to control directed motility.
    Zhang Y; Franco M; Ducret A; Mignot T
    PLoS Biol; 2010 Jul; 8(7):e1000430. PubMed ID: 20652021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A response regulator interfaces between the Frz chemosensory system and the MglA/MglB GTPase/GAP module to regulate polarity in Myxococcus xanthus.
    Keilberg D; Wuichet K; Drescher F; Søgaard-Andersen L
    PLoS Genet; 2012 Sep; 8(9):e1002951. PubMed ID: 23028358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of dynamic polarity switching in bacteria by a Ras-like G-protein and its cognate GAP.
    Leonardy S; Miertzschke M; Bulyha I; Sperling E; Wittinghofer A; Søgaard-Andersen L
    EMBO J; 2010 Jul; 29(14):2276-89. PubMed ID: 20543819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dynamic response regulator protein modulates G-protein-dependent polarity in the bacterium Myxococcus xanthus.
    Zhang Y; Guzzo M; Ducret A; Li YZ; Mignot T
    PLoS Genet; 2012; 8(8):e1002872. PubMed ID: 22916026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MglA functions as a three-state GTPase to control movement reversals of Myxococcus xanthus.
    Galicia C; Lhospice S; Varela PF; Trapani S; Zhang W; Navaza J; Herrou J; Mignot T; Cherfils J
    Nat Commun; 2019 Nov; 10(1):5300. PubMed ID: 31757955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural analysis of the Ras-like G protein MglA and its cognate GAP MglB and implications for bacterial polarity.
    Miertzschke M; Koerner C; Vetter IR; Keilberg D; Hot E; Leonardy S; Søgaard-Andersen L; Wittinghofer A
    EMBO J; 2011 Aug; 30(20):4185-97. PubMed ID: 21847100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial control of the GTPase MglA by localized RomR-RomX GEF and MglB GAP activities enables Myxococcus xanthus motility.
    Szadkowski D; Harms A; Carreira LAM; Wigbers M; Potapova A; Wuichet K; Keilberg D; Gerland U; Søgaard-Andersen L
    Nat Microbiol; 2019 Aug; 4(8):1344-1355. PubMed ID: 31110363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual specificity of a prokaryotic GTPase-activating protein (GAP) to two small Ras-like GTPases in Myxococcus xanthus.
    Kanade M; Singh NB; Lagad S; Baranwal J; Gayathri P
    FEBS J; 2021 Mar; 288(5):1565-1585. PubMed ID: 32772462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MglC, a Paralog of Myxococcus xanthus GTPase-Activating Protein MglB, Plays a Divergent Role in Motility Regulation.
    McLoon AL; Wuichet K; Häsler M; Keilberg D; Szadkowski D; Søgaard-Andersen L
    J Bacteriol; 2016 Feb; 198(3):510-20. PubMed ID: 26574508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The polarity of myxobacterial gliding is regulated by direct interactions between the gliding motors and the Ras homolog MglA.
    Nan B; Bandaria JN; Guo KY; Fan X; Moghtaderi A; Yildiz A; Zusman DR
    Proc Natl Acad Sci U S A; 2015 Jan; 112(2):E186-93. PubMed ID: 25550521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allosteric regulation of a prokaryotic small Ras-like GTPase contributes to cell polarity oscillations in bacterial motility.
    Baranwal J; Lhospice S; Kanade M; Chakraborty S; Gade PR; Harne S; Herrou J; Mignot T; Gayathri P
    PLoS Biol; 2019 Sep; 17(9):e3000459. PubMed ID: 31560685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A gated relaxation oscillator mediated by FrzX controls morphogenetic movements in Myxococcus xanthus.
    Guzzo M; Murray SM; Martineau E; Lhospice S; Baronian G; My L; Zhang Y; Espinosa L; Vincentelli R; Bratton BP; Shaevitz JW; Molle V; Howard M; Mignot T
    Nat Microbiol; 2018 Aug; 3(8):948-959. PubMed ID: 30013238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of bacterial cell polarity by small GTPases.
    Keilberg D; Søgaard-Andersen L
    Biochemistry; 2014 Apr; 53(12):1899-907. PubMed ID: 24655121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A bipartite, low-affinity roadblock domain-containing GAP complex regulates bacterial front-rear polarity.
    Szadkowski D; Carreira LAM; Søgaard-Andersen L
    PLoS Genet; 2022 Sep; 18(9):e1010384. PubMed ID: 36067225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular basis and design principles of switchable front-rear polarity and directional migration in Myxococcus xanthus.
    Carreira LAM; Szadkowski D; Lometto S; Hochberg GKA; Søgaard-Andersen L
    Nat Commun; 2023 Jul; 14(1):4056. PubMed ID: 37422455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of GTPase activation of a prokaryotic small Ras-like GTPase MglA by an asymmetrically interacting MglB dimer.
    Chakraborty S; Kanade M; Gayathri P
    J Biol Chem; 2024 Apr; 300(4):107197. PubMed ID: 38508314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The small GTPase MglA together with the TPR domain protein SgmX stimulates type IV pili formation in
    Potapova A; Carreira LAM; Søgaard-Andersen L
    Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23859-23868. PubMed ID: 32900945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unorthodox regulation of the MglA Ras-like GTPase controlling polarity in Myxococcus xanthus.
    Dinet C; Mignot T
    FEBS Lett; 2023 Mar; 597(6):850-864. PubMed ID: 36520515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model for spatio-temporal dynamics in a regulatory network for cell polarity.
    Rashkov P; Schmitt BA; Keilberg D; Beck K; Søgaard-Andersen L; Dahlke S
    Math Biosci; 2014 Dec; 258():189-200. PubMed ID: 25445576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling of protein localization and cell movements by a dynamically localized response regulator in Myxococcus xanthus.
    Leonardy S; Freymark G; Hebener S; Ellehauge E; Søgaard-Andersen L
    EMBO J; 2007 Oct; 26(21):4433-44. PubMed ID: 17932488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.