BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 20652104)

  • 1. Alternating Magnetic Field Controlled, Multifunctional Nano-Reservoirs: Intracellular Uptake and Improved Biocompatibility.
    Ghosh S; Ghoshmitra S; Cai T; Diercks DR; Mills NC; Hynds DL
    Nanoscale Res Lett; 2009 Oct; 5(1):195-204. PubMed ID: 20652104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moderate level exposure to magnetic nanodots encased in tunable poly(ethylene glycol) analouge biopolymer shell do not deleteriously affect neurite outgrowth.
    GhoshMitra S; Diercks DR; Mills NC; Hynds DA; Ghosh S
    J Nanosci Nanotechnol; 2013 Dec; 13(12):8290-7. PubMed ID: 24266226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doxorubicin Intracellular Remote Release from Biocompatible Oligo(ethylene glycol) Methyl Ether Methacrylate-Based Magnetic Nanogels Triggered by Magnetic Hyperthermia.
    Cazares-Cortes E; Espinosa A; Guigner JM; Michel A; Griffete N; Wilhelm C; Ménager C
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):25775-25788. PubMed ID: 28723064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A thermo-sensitive NIPA-based co-polymer and monosize polycationic nanoparticle for non-viral gene transfer to smooth muscle cells.
    Laçin NT; Utkan GG; Kutsal T; Pişkin E
    J Biomater Sci Polym Ed; 2012; 23(5):577-92. PubMed ID: 21310109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PEG based hyperbranched polymeric hollow nanospheres.
    Cao H; Dong Y; O'Rorke S; Wang W; Pandit A
    Nanotechnology; 2011 Feb; 22(6):065604. PubMed ID: 21212483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and fabrication of hybrid triple-responsive κ-carrageenan-based nanospheres for controlled drug delivery.
    Geyik G; Işıklan N
    Int J Biol Macromol; 2021 Dec; 192():701-715. PubMed ID: 34637816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of Cross-linked Poly (N-isopropylacrylamide) Magnetic Nano Composite for Application in the Controlled Release of Doxorubicin.
    Kaamyabi S; Badrian A; Akbarzadeh A
    Pharm Nanotechnol; 2017; 5(1):67-75. PubMed ID: 28948911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional nanospheres for co-delivery of methotrexate and mild hyperthermia to colon cancer cells.
    Costa Lima SA; Gaspar A; Reis S; Durães L
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1420-1426. PubMed ID: 28415433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small interfering RNA for cancer treatment: overcoming hurdles in delivery.
    Charbe NB; Amnerkar ND; Ramesh B; Tambuwala MM; Bakshi HA; Aljabali AAA; Khadse SC; Satheeshkumar R; Satija S; Metha M; Chellappan DK; Shrivastava G; Gupta G; Negi P; Dua K; Zacconi FC
    Acta Pharm Sin B; 2020 Nov; 10(11):2075-2109. PubMed ID: 33304780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy.
    Mashhadi Malekzadeh A; Ramazani A; Tabatabaei Rezaei SJ; Niknejad H
    J Colloid Interface Sci; 2017 Mar; 490():64-73. PubMed ID: 27870961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermo- and Light-Responsive Polymer-Coated Magnetic Nanoparticles as Potential Drug Carriers.
    Cui G; Wang H; Long S; Zhang T; Guo X; Chen S; Kakuchi T; Duan Q; Zhao D
    Front Bioeng Biotechnol; 2022; 10():931830. PubMed ID: 35903791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and
    Zheng X; Chen Y; Wang Z; Song L; Zhang Y; Gu N; Xiong F
    J Nanosci Nanotechnol; 2019 Jun; 19(6):3301-3309. PubMed ID: 30744757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionalization of magnetic nanoparticles with dendritic-linear-brush-like triblock copolymers and their drug release properties.
    He X; Wu X; Cai X; Lin S; Xie M; Zhu X; Yan D
    Langmuir; 2012 Aug; 28(32):11929-38. PubMed ID: 22799877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly behaviors of thermal- and pH- sensitive magnetic nanocarriers for stimuli-triggered release.
    Kuo CY; Liu TY; Hardiansyah A; Lee CF; Wang MS; Chiu WY
    Nanoscale Res Lett; 2014; 9(1):520. PubMed ID: 25288914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface modification and characterization of magnetic polymer nanospheres prepared by miniemulsion polymerization.
    Liu X; Guan Y; Ma Z; Liu H
    Langmuir; 2004 Nov; 20(23):10278-82. PubMed ID: 15518525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymer grafted magnetic nanoparticles for delivery of anticancer drug at lower pH and elevated temperature.
    Dutta S; Parida S; Maiti C; Banerjee R; Mandal M; Dhara D
    J Colloid Interface Sci; 2016 Apr; 467():70-80. PubMed ID: 26773613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Injectable On-Demand Pulsatile Drug Delivery Hydrogels Using Alternating Magnetic Field-Triggered Polymer Glass Transitions.
    Campbell S; Preciado Rivera N; Said S; Lam A; Weir L; Gour J; Smeets NMB; Hoare T
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):48892-48902. PubMed ID: 37816152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy.
    Meenach SA; Hilt JZ; Anderson KW
    Acta Biomater; 2010 Mar; 6(3):1039-46. PubMed ID: 19840875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic/NIR-thermally responsive hybrid nanogels for optical temperature sensing, tumor cell imaging and triggered drug release.
    Wang H; Yi J; Mukherjee S; Banerjee P; Zhou S
    Nanoscale; 2014 Nov; 6(21):13001-11. PubMed ID: 25243783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new style for synthesis of thermo-responsive Fe
    Ghamkhari A; Massoumi B; Salehi R
    J Biomater Sci Polym Ed; 2017 Dec; 28(17):1985-2005. PubMed ID: 28783443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.