These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 20652139)

  • 21. Direct electrical transport measurement on a single thermoelectric nanowire embedded in an alumina template.
    Ben Khedim M; Cagnon L; Garagnon C; Serradeil V; Bourgault D
    Phys Chem Chem Phys; 2016 Apr; 18(17):12332-7. PubMed ID: 27086560
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stability of Schottky and Ohmic Au Nanocatalysts to ZnO Nanowires.
    Lord AM; Ramasse QM; Kepaptsoglou DM; Periwal P; Ross FM; Wilks SP
    Nano Lett; 2017 Nov; 17(11):6626-6636. PubMed ID: 29024594
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of semiconducting and metallic indium oxide nanowires.
    Lim T; Lee S; Meyyappan M; Ju S
    ACS Nano; 2011 May; 5(5):3917-22. PubMed ID: 21504171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gate-induced superconductivity in a solution-processed organic polymer film.
    Schön JH; Dodabalapur A; Bao Z; Kloc C; Schenker O; Batlogg B
    Nature; 2001 Mar; 410(6825):189-92. PubMed ID: 11242074
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gas sensing properties of single conducting polymer nanowires and the effect of temperature.
    Dan Y; Cao Y; Mallouk TE; Evoy S; Johnson AT
    Nanotechnology; 2009 Oct; 20(43):434014. PubMed ID: 19801757
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stoichiometry dependent electron transport and gas sensing properties of indium oxide nanowires.
    Gali P; Sapkota G; Syllaios AJ; Littler C; Philipose U
    Nanotechnology; 2013 Jun; 24(22):225704. PubMed ID: 23644899
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tuning the Electronic Conductivity in Hydrothermally Grown Rutile TiO₂ Nanowires: Effect of Heat Treatment in Different Environments.
    Folger A; Kalb J; Schmidt-Mende L; Scheu C
    Nanomaterials (Basel); 2017 Sep; 7(10):. PubMed ID: 28946626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrical conductivity of random metallic nanowire networks: an analytical consideration along with computer simulation.
    Tarasevich YY; Vodolazskaya IV; Eserkepov AV
    Phys Chem Chem Phys; 2022 May; 24(19):11812-11819. PubMed ID: 35507328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermoelectric properties of individual single-crystalline PbTe nanowires grown by a vapor transport method.
    Lee SH; Shim W; Jang SY; Roh JW; Kim P; Park J; Lee W
    Nanotechnology; 2011 Jul; 22(29):295707. PubMed ID: 21677373
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-walled carbon nanotube-based coaxial nanowires: synthesis, characterization, and electrical properties.
    Zhang X; Lü Z; Wen M; Liang H; Zhang J; Liu Z
    J Phys Chem B; 2005 Jan; 109(3):1101-7. PubMed ID: 16851066
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electron transport in high-resistance semiconductor nanowires through two-probe measurements.
    Lin YF; Chen TH; Chang CH; Chang YW; Chiu YC; Hung HC; Kai JJ; Liu Z; Fang J; Jian WB
    Phys Chem Chem Phys; 2010 Sep; 12(36):10928-32. PubMed ID: 20657947
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers.
    Lin J; Cretu O; Zhou W; Suenaga K; Prasai D; Bolotin KI; Cuong NT; Otani M; Okada S; Lupini AR; Idrobo JC; Caudel D; Burger A; Ghimire NJ; Yan J; Mandrus DG; Pennycook SJ; Pantelides ST
    Nat Nanotechnol; 2014 Jun; 9(6):436-42. PubMed ID: 24776648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decrease in thermal conductivity in polymeric P3HT nanowires by size-reduction induced by crystal orientation: new approaches towards thermal transport engineering of organic materials.
    Rojo MM; Martín J; Grauby S; Borca-Tasciuc T; Dilhaire S; Martin-Gonzalez M
    Nanoscale; 2014 Jul; 6(14):7858-65. PubMed ID: 24933655
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermal Transport in Silicon Nanowires at High Temperature up to 700 K.
    Lee J; Lee W; Lim J; Yu Y; Kong Q; Urban JJ; Yang P
    Nano Lett; 2016 Jul; 16(7):4133-40. PubMed ID: 27243378
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polymer-induced orientation of nanowires under electric fields.
    Arenas-Guerrero P; Delgado ÁV; Ahualli S; Jiménez ML
    J Colloid Interface Sci; 2021 Jun; 591():58-66. PubMed ID: 33592526
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of Environmental Factors and Metallic Electrodes on AC Electrical Conduction Through DNA Molecule.
    Abdalla S; Obaid A; Al-Marzouki FM
    Nanoscale Res Lett; 2017 Dec; 12(1):316. PubMed ID: 28454482
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Light-triggered self-construction of supramolecular organic nanowires as metallic interconnects.
    Faramarzi V; Niess F; Moulin E; Maaloum M; Dayen JF; Beaufrand JB; Zanettini S; Doudin B; Giuseppone N
    Nat Chem; 2012 Apr; 4(6):485-90. PubMed ID: 22614384
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic manipulation and separation of individual semiconducting and metallic nanowires.
    Jamshidi A; Pauzauskie PJ; Schuck PJ; Ohta AT; Chiou PY; Chou J; Yang P; Wu MC
    Nat Photonics; 2008; 2(2):86-89. PubMed ID: 19789729
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Weak localization and the approach to metal-insulator transition in single crystalline germanium nanowires.
    Sett S; Das K; Raychaudhuri AK
    J Phys Condens Matter; 2017 Mar; 29(11):115301. PubMed ID: 28170347
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanocontact Disorder in Nanoelectronics for Modulation of Light and Gas Sensitivities.
    Lin YF; Chang CH; Hung TC; Jian WB; Tsukagoshi K; Wu YH; Chang L; Liu Z; Fang J
    Sci Rep; 2015 Aug; 5():13035. PubMed ID: 26260674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.