These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 20652139)
41. Enhancement of electrical and thermomechanical properties of silver nanowire composites by the introduction of nonconductive nanoparticles: experiment and simulation. Nam S; Cho HW; Lim S; Kim D; Kim H; Sung BJ ACS Nano; 2013 Jan; 7(1):851-6. PubMed ID: 23237625 [TBL] [Abstract][Full Text] [Related]
42. Chirality-Discriminated Conductivity of Metal-Amino Acid Biocoordination Polymer Nanowires. Zheng J; Wu Y; Deng K; He M; He L; Cao J; Zhang X; Liu Y; Li S; Tang Z ACS Nano; 2016 Sep; 10(9):8564-70. PubMed ID: 27556354 [TBL] [Abstract][Full Text] [Related]
43. Preparation and electrical properties of ultrafine Ga2O3 nanowires. Huang Y; Yue S; Wang Z; Wang Q; Shi C; Xu Z; Bai XD; Tang C; Gu C J Phys Chem B; 2006 Jan; 110(2):796-800. PubMed ID: 16471605 [TBL] [Abstract][Full Text] [Related]
44. Enhancement of Interface Characteristics of Neural Probe Based on Graphene, ZnO Nanowires, and Conducting Polymer PEDOT. Ryu M; Yang JH; Ahn Y; Sim M; Lee KH; Kim K; Lee T; Yoo SJ; Kim SY; Moon C; Je M; Choi JW; Lee Y; Jang JE ACS Appl Mater Interfaces; 2017 Mar; 9(12):10577-10586. PubMed ID: 28266832 [TBL] [Abstract][Full Text] [Related]
45. Electrical properties of single and multiple poly(3,4-ethylenedioxythiophene) nanowires for sensing nitric oxide gas. Lu HH; Lin CY; Hsiao TC; Fang YY; Ho KC; Yang D; Lee CK; Hsu SM; Lin CW Anal Chim Acta; 2009 Apr; 640(1-2):68-74. PubMed ID: 19362622 [TBL] [Abstract][Full Text] [Related]
46. Contactless Electrical and Structural Characterization of Semiconductor Nanowires with Axially Modulated Doping Profiles. Yuan W; Tutuncuoglu G; Mohabir A; Liu L; Feldman LC; Filler MA; Shan JW Small; 2019 Apr; 15(15):e1805140. PubMed ID: 30884159 [TBL] [Abstract][Full Text] [Related]
47. Enhanced electrical conductivity in poly(3-hexylthiophene)/fluorinated tetracyanoquinodimethane nanowires grown with a porous alumina template. Hu J; Clark KW; Hayakawa R; Li AP; Wakayama Y Langmuir; 2013 Jun; 29(24):7266-70. PubMed ID: 23298158 [TBL] [Abstract][Full Text] [Related]
48. Intrinsic glassy-metallic transport in an amorphous coordination polymer. Xie J; Ewing S; Boyn JN; Filatov AS; Cheng B; Ma T; Grocke GL; Zhao N; Itani R; Sun X; Cho H; Chen Z; Chapman KW; Patel SN; Talapin DV; Park J; Mazziotti DA; Anderson JS Nature; 2022 Nov; 611(7936):479-484. PubMed ID: 36289346 [TBL] [Abstract][Full Text] [Related]
49. Unusual Oxygen Partial Pressure Dependence of Electrical Transport of Single-Crystalline Metal Oxide Nanowires Grown by the Vapor-Liquid-Solid Process. Anzai H; Takahashi T; Suzuki M; Kanai M; Zhang G; Hosomi T; Seki T; Nagashima K; Shibata N; Yanagida T Nano Lett; 2019 Mar; 19(3):1675-1681. PubMed ID: 30827116 [TBL] [Abstract][Full Text] [Related]
50. Electrical conduction mechanisms in natively doped ZnO nanowires. Chiu SP; Lin YH; Lin JJ Nanotechnology; 2009 Jan; 20(1):015203. PubMed ID: 19417245 [TBL] [Abstract][Full Text] [Related]
51. Sn-doped bismuth telluride nanowires with high conductivity. Mi G; Li L; Zhang Y; Zheng G Nanoscale; 2012 Oct; 4(20):6276-8. PubMed ID: 22990308 [TBL] [Abstract][Full Text] [Related]
52. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Wu Y; Xiang J; Yang C; Lu W; Lieber CM Nature; 2004 Jul; 430(6995):61-5. PubMed ID: 15229596 [TBL] [Abstract][Full Text] [Related]
53. In situ electron microscopy four-point electromechanical characterization of freestanding metallic and semiconducting nanowires. Bernal RA; Filleter T; Connell JG; Sohn K; Huang J; Lauhon LJ; Espinosa HD Small; 2014 Feb; 10(4):725-33. PubMed ID: 24115555 [TBL] [Abstract][Full Text] [Related]
54. Using the hard templating method for the synthesis of metal-conducting polymer multi-segmented nanowires. Callegari V; Demoustier-Champagne S Macromol Rapid Commun; 2011 Jan; 32(1):25-34. PubMed ID: 21432967 [TBL] [Abstract][Full Text] [Related]
55. Separation of Semiconducting Carbon Nanotubes for Flexible and Stretchable Electronics Using Polymer Removable Method. Lei T; Pochorovski I; Bao Z Acc Chem Res; 2017 Apr; 50(4):1096-1104. PubMed ID: 28358486 [TBL] [Abstract][Full Text] [Related]