These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 20652356)

  • 1. Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae.
    Zheng DQ; Wu XC; Wang PM; Chi XQ; Tao XL; Li P; Jiang XH; Zhao YH
    J Ind Microbiol Biotechnol; 2011 Mar; 38(3):415-22. PubMed ID: 20652356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved ethanol productivity and ethanol tolerance through genome shuffling of Saccharomyces cerevisiae and Pichia stipitis.
    Jetti KD; Gns RR; Garlapati D; Nammi SK
    Int Microbiol; 2019 Jun; 22(2):247-254. PubMed ID: 30810988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The combination of glycerol metabolic engineering and drug resistance marker-aided genome shuffling to improve very-high-gravity fermentation performances of industrial Saccharomyces cerevisiae.
    Wang PM; Zheng DQ; Liu TZ; Tao XL; Feng MG; Min H; Jiang XH; Wu XC
    Bioresour Technol; 2012 Mar; 108():203-10. PubMed ID: 22269055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae.
    Hou L
    Appl Biochem Biotechnol; 2010 Feb; 160(4):1084-93. PubMed ID: 19214789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome shuffling in the ethanologenic yeast Candida krusei to improve acetic acid tolerance.
    Wei P; Li Z; He P; Lin Y; Jiang N
    Biotechnol Appl Biochem; 2008 Feb; 49(Pt 2):113-20. PubMed ID: 17630953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae.
    Geng P; Zhang L; Shi GY
    World J Microbiol Biotechnol; 2017 May; 33(5):94. PubMed ID: 28405910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae.
    Shi DJ; Wang CL; Wang KM
    J Ind Microbiol Biotechnol; 2009 Jan; 36(1):139-47. PubMed ID: 18846398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene.
    Zhang JG; Liu XY; He XP; Guo XN; Lu Y; Zhang BR
    Biotechnol Lett; 2011 Feb; 33(2):277-84. PubMed ID: 20953665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid.
    Mira NP; Palma M; Guerreiro JF; Sá-Correia I
    Microb Cell Fact; 2010 Oct; 9():79. PubMed ID: 20973990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of robustness and ethanol production of ethanologenic Saccharomyces cerevisiae under co-stress of heat and inhibitors.
    Lu Y; Cheng YF; He XP; Guo XN; Zhang BR
    J Ind Microbiol Biotechnol; 2012 Jan; 39(1):73-80. PubMed ID: 21698486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deletion of JJJ1 improves acetic acid tolerance and bioethanol fermentation performance of Saccharomyces cerevisiae strains.
    Wu X; Zhang L; Jin X; Fang Y; Zhang K; Qi L; Zheng D
    Biotechnol Lett; 2016 Jul; 38(7):1097-106. PubMed ID: 27067354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel strategy to construct yeast Saccharomyces cerevisiae strains for very high gravity fermentation.
    Tao X; Zheng D; Liu T; Wang P; Zhao W; Zhu M; Jiang X; Zhao Y; Wu X
    PLoS One; 2012; 7(2):e31235. PubMed ID: 22363590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel methods of genome shuffling in Saccharomyces cerevisiae.
    Hou L
    Biotechnol Lett; 2009 May; 31(5):671-7. PubMed ID: 19153667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saccharomyces cerevisiae genome shuffling through recursive population mating leads to improved tolerance to spent sulfite liquor.
    Pinel D; D'Aoust F; del Cardayre SB; Bajwa PK; Lee H; Martin VJ
    Appl Environ Microbiol; 2011 Jul; 77(14):4736-43. PubMed ID: 21622800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1.
    Zhang MM; Zhao XQ; Cheng C; Bai FW
    Biotechnol J; 2015 Dec; 10(12):1903-11. PubMed ID: 26479519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae.
    Sakihama Y; Hasunuma T; Kondo A
    J Biosci Bioeng; 2015 Mar; 119(3):297-302. PubMed ID: 25282639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increase of ethanol tolerance of Saccharomyces cerevisiae by error-prone whole genome amplification.
    Luhe AL; Tan L; Wu J; Zhao H
    Biotechnol Lett; 2011 May; 33(5):1007-11. PubMed ID: 21246255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethanol tolerance of sugar transport, and the rectification of stuck wine fermentations.
    Santos J; Sousa MJ; Cardoso H; Inácio J; Silva S; Spencer-Martins I; Leão C
    Microbiology (Reading); 2008 Feb; 154(Pt 2):422-430. PubMed ID: 18227246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiology of the fuel ethanol strain Saccharomyces cerevisiae PE-2 at low pH indicates a context-dependent performance relevant for industrial applications.
    Della-Bianca BE; de Hulster E; Pronk JT; van Maris AJ; Gombert AK
    FEMS Yeast Res; 2014 Dec; 14(8):1196-205. PubMed ID: 25263709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain improvement of the pentose-fermenting yeast Pichia stipitis by genome shuffling.
    Bajwa PK; Pinel D; Martin VJ; Trevors JT; Lee H
    J Microbiol Methods; 2010 May; 81(2):179-86. PubMed ID: 20298725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.