These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 20652375)

  • 1. Formation of calcium deficient HAp/collagen composites by hydrolysis of alpha-TCP.
    Touny AH; Bhaduri S; Brown PW
    J Mater Sci Mater Med; 2010 Sep; 21(9):2533-41. PubMed ID: 20652375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of composites comprised of calcium deficient HAp and cross-linked gelatin.
    Touny AH; Laurencin C; Nair L; Allcock H; Brown PW
    J Mater Sci Mater Med; 2008 Oct; 19(10):3193-201. PubMed ID: 18452028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of the method of apatite seed crystals addition on setting reaction of α-tricalcium phosphate based apatite cement.
    Tsuru K; Ruslin ; Maruta M; Matsuya S; Ishikawa K
    J Mater Sci Mater Med; 2015 Oct; 26(10):244. PubMed ID: 26411440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of calcium-deficient hydroxyapatite from alpha-tricalcium phosphate.
    TenHuisen KS; Brown PW
    Biomaterials; 1998 Dec; 19(23):2209-17. PubMed ID: 9884062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. alpha-Tricalcium phosphate hydrolysis to hydroxyapatite at and near physiological temperature.
    Durucan C; Brown PW
    J Mater Sci Mater Med; 2000 Jun; 11(6):365-71. PubMed ID: 15348018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low temperature formation of calcium-deficient hydroxyapatite-PLA/PLGA composites.
    Durucan C; Brown PW
    J Biomed Mater Res; 2000 Sep; 51(4):717-25. PubMed ID: 10880121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium-deficient hydroxyapatite-PLGA composites: mechanical and microstructural investigation.
    Durucan C; Brown PW
    J Biomed Mater Res; 2000 Sep; 51(4):726-34. PubMed ID: 10880122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apatite formation in composites of alpha-TCP and degradable polyesters.
    Van Den Vreken NM; Pieters IY; De Maeyer EA; Jackers GJ; Schacht EH; Verbeeck RM
    J Biomater Sci Polym Ed; 2006; 17(9):953-67. PubMed ID: 17094635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of magnesium on hydroxyapatite formation in vitro from CaHPO4 and Ca4(PO4)2O at 37.4 degrees C.
    Martin RI; Brown PW
    Calcif Tissue Int; 1997 Jun; 60(6):538-46. PubMed ID: 9164829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of beta-tricalcium phosphate/collagen sponge composite for bone regeneration.
    Matsuno T; Nakamura T; Kuremoto K; Notazawa S; Nakahara T; Hashimoto Y; Satoh T; Shimizu Y
    Dent Mater J; 2006 Mar; 25(1):138-44. PubMed ID: 16706309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variations in solution chemistry during calcium-deficient and stoichiometric hydroxyapatite formation from CaHPO4.2H2O and Ca4(PO4)2O.
    TenHuisen KS; Brown PW
    J Biomed Mater Res; 1997 Aug; 36(2):233-41. PubMed ID: 9261685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of amorphous phases during the hydraulic conversion of α-TCP into calcium-deficient hydroxyapatite.
    Hurle K; Neubauer J; Bohner M; Doebelin N; Goetz-Neunhoeffer F
    Acta Biomater; 2014 Sep; 10(9):3931-41. PubMed ID: 24681375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the reactivity and in vitro bioactivity of Sr-substituted alpha-TCP cements.
    Saint-Jean SJ; Camiré CL; Nevsten P; Hansen S; Ginebra MP
    J Mater Sci Mater Med; 2005 Nov; 16(11):993-1001. PubMed ID: 16388381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Setting reaction and hardening of an apatitic calcium phosphate cement.
    Ginebra MP; Fernández E; De Maeyer EA; Verbeeck RM; Boltong MG; Ginebra J; Driessens FC; Planell JA
    J Dent Res; 1997 Apr; 76(4):905-12. PubMed ID: 9126187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of strontium and gelatin on the reactivity of alpha-tricalcium phosphate.
    Boanini E; Panzavolta S; Rubini K; Gandolfi M; Bigi A
    Acta Biomater; 2010 Mar; 6(3):936-42. PubMed ID: 19819353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of calcium phosphate cements modified by addition of amorphous calcium phosphate.
    Van den Vreken NM; Pieters IY; Declercq HA; Cornelissen MJ; Verbeeck RM
    Acta Biomater; 2010 Feb; 6(2):617-25. PubMed ID: 19654057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation and properties of composites comprised of calcium-deficient hydroxyapatites and ethyl alanate polyphosphazenes.
    Greish YE; Sturgeon JL; Singh A; Krogman NR; Touny AH; Sethuraman S; Nair LS; Laurencin CT; Allcock HR; Brown PW
    J Mater Sci Mater Med; 2008 Sep; 19(9):3153-60. PubMed ID: 18437537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructure and biocompatibility of composite biomaterials fabricated from titanium and tricalcium phosphate by spark plasma sintering.
    Mondal D; Nguyen L; Oh IH; Lee BT
    J Biomed Mater Res A; 2013 May; 101(5):1489-501. PubMed ID: 23135893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioactive ceramic composites sintered from hydroxyapatite and silica at 1,200 degrees C: preparation, microstructures and in vitro bone-like layer growth.
    Li XW; Yasuda HY; Umakoshi Y
    J Mater Sci Mater Med; 2006 Jun; 17(6):573-81. PubMed ID: 16691357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of porous beta-tricalcium phosphate/collagen composites with an integrated structure.
    Zou C; Weng W; Deng X; Cheng K; Liu X; Du P; Shen G; Han G
    Biomaterials; 2005 Sep; 26(26):5276-84. PubMed ID: 15814125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.