These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 20652562)

  • 1. A simple method for fabricating artificial kidney stones of different physical properties.
    Esch E; Simmons WN; Sankin G; Cocks HF; Preminger GM; Zhong P
    Urol Res; 2010 Aug; 38(4):315-9. PubMed ID: 20652562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic and mechanical properties of artificial stones in comparison to natural kidney stones.
    Heimbach D; Munver R; Zhong P; Jacobs J; Hesse A; Müller SC; Preminger GM
    J Urol; 2000 Aug; 164(2):537-44. PubMed ID: 10893640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A composite kidney stone phantom with mechanical properties controllable over the range of human kidney stones.
    Simmons WN; Cocks FH; Zhong P; Preminger G
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):130-3. PubMed ID: 19878912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic and mechanical properties of renal calculi: implications in shock wave lithotripsy.
    Chuong CJ; Zhong P; Preminger GM
    J Endourol; 1993 Dec; 7(6):437-44. PubMed ID: 8124332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of chemical treatments for improved comminution of artificial stones.
    Heimbach D; Kourambas J; Zhong P; Jacobs J; Hesse A; Mueller SC; Delvecchio FC; Cocks FH; Preminger GM
    J Urol; 2004 May; 171(5):1797-801. PubMed ID: 15076279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of differing stone fragility in extracorporeal shockwave lithotripsy.
    Zhong P; Preminger GM
    J Endourol; 1994 Aug; 8(4):263-8. PubMed ID: 7981735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation of corneal acoustic and elastic properties in a canine eye model.
    He X; Liu J
    Invest Ophthalmol Vis Sci; 2011 Feb; 52(2):731-6. PubMed ID: 20926820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of ultrasound stiffness imaging methods using tissue mimicking phantoms.
    Manickam K; Machireddy RR; Seshadri S
    Ultrasonics; 2014 Feb; 54(2):621-31. PubMed ID: 24083832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards an understanding of the chemo-mechanical influences on kidney stone failure via the material point method.
    Raymond SJ; Maragh J; Masic A; Williams JR
    PLoS One; 2020; 15(12):e0240133. PubMed ID: 33306670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High strain rate testing of kidney stones.
    Sylven ET; Agarwal S; Briant CL; Cleveland RO
    J Mater Sci Mater Med; 2004 May; 15(5):613-7. PubMed ID: 15386970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined Burst Wave Lithotripsy and Ultrasonic Propulsion for Improved Urinary Stone Fragmentation.
    Zwaschka TA; Ahn JS; Cunitz BW; Bailey MR; Dunmire B; Sorensen MD; Harper JD; Maxwell AD
    J Endourol; 2018 Apr; 32(4):344-349. PubMed ID: 29433329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Stone Size on the Comminution Process and Efficiency in Shock Wave Lithotripsy.
    Zhang Y; Nault I; Mitran S; Iversen ES; Zhong P
    Ultrasound Med Biol; 2016 Nov; 42(11):2662-2675. PubMed ID: 27515177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of polyvinyl alcohol cryogel mechanical properties with four ultrasound elastography methods and comparison with gold standard testings.
    Fromageau J; Gennisson JL; Schmitt C; Maurice RL; Mongrain R; Cloutier G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Mar; 54(3):498-509. PubMed ID: 17375819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for characterization of tissue elastic properties combining ultrasonic computed tomography with elastography.
    Glozman T; Azhari H
    J Ultrasound Med; 2010 Mar; 29(3):387-98. PubMed ID: 20194935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How to improve lithotripsy and chemolitholysis of brushite-stones: an in vitro study.
    Heimbach D; Jacobs D; Hesse A; Müller SC; Zhong P; Preminger GM
    Urol Res; 1999 Aug; 27(4):266-71. PubMed ID: 10460897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Ti-Nb-Zr alloys with high elastic admissible strain for temporary orthopedic devices.
    Ozan S; Lin J; Li Y; Ipek R; Wen C
    Acta Biomater; 2015 Jul; 20():176-187. PubMed ID: 25818950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy.
    Cleveland RO; Sapozhnikov OA
    J Acoust Soc Am; 2005 Oct; 118(4):2667-76. PubMed ID: 16266186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning Viscoelasticity with Minor Changes in Speed of Sound in an Ultrasound Phantom Material.
    Sjöstrand S; Meirza B; Grassi L; Svensson I; Camargo LC; Pavan TZ; Evertsson M
    Ultrasound Med Biol; 2020 Aug; 46(8):2070-2078. PubMed ID: 32423572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macrofibers with High Mechanical Performance Based on Aligned Bacterial Cellulose Nanofibers.
    Yao J; Chen S; Chen Y; Wang B; Pei Q; Wang H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20330-20339. PubMed ID: 28045246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of injurious compression on the elastic, hyper-elastic and visco-elastic properties of porcine peripheral nerves.
    Fraser S; Barberio CG; Chaudhry T; Power DM; Tan S; Lawless BM; Espino DM
    J Mech Behav Biomed Mater; 2021 Sep; 121():104624. PubMed ID: 34139483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.