BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 20652907)

  • 1. The redox-sensing regulator YodB senses quinones and diamide via a thiol-disulfide switch in Bacillus subtilis.
    Chi BK; Albrecht D; Gronau K; Becher D; Hecker M; Antelmann H
    Proteomics; 2010 Sep; 10(17):3155-64. PubMed ID: 20652907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of quinone detoxification by the thiol stress sensing DUF24/MarR-like repressor, YodB in Bacillus subtilis.
    Leelakriangsak M; Huyen NT; Töwe S; van Duy N; Becher D; Hecker M; Antelmann H; Zuber P
    Mol Microbiol; 2008 Mar; 67(5):1108-24. PubMed ID: 18208493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two distinct mechanisms of transcriptional regulation by the redox sensor YodB.
    Lee SJ; Lee IG; Lee KY; Kim DG; Eun HJ; Yoon HJ; Chae S; Song SH; Kang SO; Seo MD; Kim HS; Park SJ; Lee BJ
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):E5202-11. PubMed ID: 27531959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The paralogous MarR/DUF24-family repressors YodB and CatR control expression of the catechol dioxygenase CatE in Bacillus subtilis.
    Chi BK; Kobayashi K; Albrecht D; Hecker M; Antelmann H
    J Bacteriol; 2010 Sep; 192(18):4571-81. PubMed ID: 20639328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The MarR/DUF24-Family QsrR Repressor Senses Quinones and Oxidants by Thiol Switch Mechanisms in
    Fritsch VN; Loi VV; Kuropka B; Gruhlke M; Weise C; Antelmann H
    Antioxid Redox Signal; 2023 May; 38(13-15):877-895. PubMed ID: 36242097
    [No Abstract]   [Full Text] [Related]  

  • 6. A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrR.
    Lee JW; Soonsanga S; Helmann JD
    Proc Natl Acad Sci U S A; 2007 May; 104(21):8743-8. PubMed ID: 17502599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual negative control of spx transcription initiation from the P3 promoter by repressors PerR and YodB in Bacillus subtilis.
    Leelakriangsak M; Kobayashi K; Zuber P
    J Bacteriol; 2007 Mar; 189(5):1736-44. PubMed ID: 17158660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox-sensitive transcriptional control by a thiol/disulphide switch in the global regulator, Spx.
    Nakano S; Erwin KN; Ralle M; Zuber P
    Mol Microbiol; 2005 Jan; 55(2):498-510. PubMed ID: 15659166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic signatures uncover thiol-specific electrophile resistance mechanisms in Bacillus subtilis.
    Antelmann H; Hecker M; Zuber P
    Expert Rev Proteomics; 2008 Feb; 5(1):77-90. PubMed ID: 18282125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural insights into the redox-switch mechanism of the MarR/DUF24-type regulator HypR.
    Palm GJ; Khanh Chi B; Waack P; Gronau K; Becher D; Albrecht D; Hinrichs W; Read RJ; Antelmann H
    Nucleic Acids Res; 2012 May; 40(9):4178-92. PubMed ID: 22238377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Requirement of the zinc-binding domain of ClpX for Spx proteolysis in Bacillus subtilis and effects of disulfide stress on ClpXP activity.
    Zhang Y; Zuber P
    J Bacteriol; 2007 Nov; 189(21):7669-80. PubMed ID: 17827297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome and proteome analyses in response to 2-methylhydroquinone and 6-brom-2-vinyl-chroman-4-on reveal different degradation systems involved in the catabolism of aromatic compounds in Bacillus subtilis.
    Nguyen VD; Wolf C; Mäder U; Lalk M; Langer P; Lindequist U; Hecker M; Antelmann H
    Proteomics; 2007 May; 7(9):1391-408. PubMed ID: 17407181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox sensing and histidine oxidation: no longer PerR-fect strangers.
    Moye-Rowley WS
    Nat Chem Biol; 2006 May; 2(5):234-5. PubMed ID: 16619021
    [No Abstract]   [Full Text] [Related]  

  • 14. Structure and function of the arginine repressor-operator complex from Bacillus subtilis.
    Garnett JA; Marincs F; Baumberg S; Stockley PG; Phillips SE
    J Mol Biol; 2008 May; 379(2):284-98. PubMed ID: 18455186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depletion of thiol-containing proteins in response to quinones in Bacillus subtilis.
    Liebeke M; Pöther DC; van Duy N; Albrecht D; Becher D; Hochgräfe F; Lalk M; Hecker M; Antelmann H
    Mol Microbiol; 2008 Sep; 69(6):1513-29. PubMed ID: 18673455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutational analysis of active site residues essential for sensing of organic hydroperoxides by Bacillus subtilis OhrR.
    Soonsanga S; Fuangthong M; Helmann JD
    J Bacteriol; 2007 Oct; 189(19):7069-76. PubMed ID: 17660290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interchangeable modules in bacterial thiol-disulfide exchange pathways.
    Kouwen TR; van Dijl JM
    Trends Microbiol; 2009 Jan; 17(1):6-12. PubMed ID: 19059781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence thiol modification assay: oxidatively modified proteins in Bacillus subtilis.
    Hochgräfe F; Mostertz J; Albrecht D; Hecker M
    Mol Microbiol; 2005 Oct; 58(2):409-25. PubMed ID: 16194229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Spx paralogue MgsR (YqgZ) controls a subregulon within the general stress response of Bacillus subtilis.
    Reder A; Höper D; Weinberg C; Gerth U; Fraunholz M; Hecker M
    Mol Microbiol; 2008 Sep; 69(5):1104-20. PubMed ID: 18643936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Penicillin-binding protein SpoVD disulphide is a target for StoA in Bacillus subtilis forespores.
    Liu Y; Carlsson Möller M; Petersen L; Söderberg CA; Hederstedt L
    Mol Microbiol; 2010 Jan; 75(1):46-60. PubMed ID: 19919673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.