These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 20652917)

  • 1. The first catalytic tyrosinase model system based on a mononuclear copper(I) complex: kinetics and mechanism.
    Rolff M; Schottenheim J; Peters G; Tuczek F
    Angew Chem Int Ed Engl; 2010 Aug; 49(36):6438-42. PubMed ID: 20652917
    [No Abstract]   [Full Text] [Related]  

  • 2. Kinetic evaluation of phenolase activity of tyrosinase using simplified catalytic reaction system.
    Yamazaki S; Itoh S
    J Am Chem Soc; 2003 Oct; 125(43):13034-5. PubMed ID: 14570470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trapping tyrosinase key active intermediate under turnover.
    Spada A; Palavicini S; Monzani E; Bubacco L; Casella L
    Dalton Trans; 2009 Sep; (33):6468-71. PubMed ID: 19672489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactivity of dinuclear copper(II) complexes towards melanoma cells: Correlation with its stability, tyrosinase mimicking and nuclease activity.
    Nunes CJ; Borges BE; Nakao LS; Peyroux E; Hardré R; Faure B; Réglier M; Giorgi M; Prieto MB; Oliveira CC; Da Costa Ferreira AM
    J Inorg Biochem; 2015 Aug; 149():49-58. PubMed ID: 26021698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New catalytic model systems of tyrosinase: fine tuning of the reactivity with pyrazole-based N-donor ligands.
    Hamann JN; Tuczek F
    Chem Commun (Camb); 2014 Mar; 50(18):2298-300. PubMed ID: 24443724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-translational His-Cys cross-linkage formation in tyrosinase induced by copper(II)-peroxo species.
    Fujieda N; Ikeda T; Murata M; Yanagisawa S; Aono S; Ohkubo K; Nagao S; Ogura T; Hirota S; Fukuzumi S; Nakamura Y; Hata Y; Itoh S
    J Am Chem Soc; 2011 Feb; 133(5):1180-3. PubMed ID: 21218798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marigold-like tyrosinase-embedded nanostructures-a nano-in-micro system.
    Manigandan A; Vimalanadhan M; Dhandapani R; Bagewadi S; Kannan V; Sethuraman S; Subramanian A
    Dalton Trans; 2020 Aug; 49(32):11329-11335. PubMed ID: 32760996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insights into dioxygen-activating copper enzymes.
    Rosenzweig AC; Sazinsky MH
    Curr Opin Struct Biol; 2006 Dec; 16(6):729-35. PubMed ID: 17011183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tyrosinase kinetics: a semi-quantitative model of the mechanism of oxidation of monohydric and dihydric phenolic substrates.
    Riley PA
    J Theor Biol; 2000 Mar; 203(1):1-12. PubMed ID: 10677273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxylation of phenolic compounds by a peroxodicopper(II) complex: further insight into the mechanism of tyrosinase.
    Palavicini S; Granata A; Monzani E; Casella L
    J Am Chem Soc; 2005 Dec; 127(51):18031-6. PubMed ID: 16366554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic evaluation of catalase and peroxygenase activities of tyrosinase.
    Yamazaki S; Morioka C; Itoh S
    Biochemistry; 2004 Sep; 43(36):11546-53. PubMed ID: 15350140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of thiobarbituric acid on tyrosinase: inhibition kinetics and computational simulation.
    Yin SJ; Si YX; Wang ZJ; Wang SF; Oh S; Lee S; Sim SM; Yang JM; Qian GY; Lee J; Park YD
    J Biomol Struct Dyn; 2011 Dec; 29(3):463-70. PubMed ID: 22066533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histidine residues at the copper-binding site in human tyrosinase are essential for its catalytic activities.
    Noh H; Lee SJ; Jo HJ; Choi HW; Hong S; Kong KH
    J Enzyme Inhib Med Chem; 2020 Dec; 35(1):726-732. PubMed ID: 32180482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simplest Monodentate Imidazole Stabilization of the oxy-Tyrosinase Cu2 O2 Core: Phenolate Hydroxylation through a Cu(III) Intermediate.
    Chiang L; Keown W; Citek C; Wasinger EC; Stack TD
    Angew Chem Int Ed Engl; 2016 Aug; 55(35):10453-7. PubMed ID: 27440390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling tyrosinase activity. Effect of ligand topology on aromatic ring hydroxylation: an overview.
    De A; Mandal S; Mukherjee R
    J Inorg Biochem; 2008; 102(5-6):1170-89. PubMed ID: 18336914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between the type-3 copper protein tyrosinase and the substrate analogue p-nitrophenol studied by NMR.
    Tepper AW; Bubacco L; Canters GW
    J Am Chem Soc; 2005 Jan; 127(2):567-75. PubMed ID: 15643881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of the oxy-tyrosinase core and the fundamental components of phenolic hydroxylation.
    Citek C; Lyons CT; Wasinger EC; Stack TD
    Nat Chem; 2012 Mar; 4(4):317-22. PubMed ID: 22437718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alzheimer's disease related copper(II)- beta-amyloid peptide exhibits phenol monooxygenase and catechol oxidase activities.
    da Silva GF; Ming LJ
    Angew Chem Int Ed Engl; 2005 Aug; 44(34):5501-4. PubMed ID: 16052638
    [No Abstract]   [Full Text] [Related]  

  • 19. Unlike reactivity of mono- and binuclear imine-copper(II) complexes toward melanoma cells via a tyrosinase-dependent mechanism.
    Nunes CJ; Otake AH; Bustos SO; Fazzi RB; Chammas R; Da Costa Ferreira AM
    Chem Biol Interact; 2019 Sep; 311():108789. PubMed ID: 31401089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper-Oxygen Dynamics in the Tyrosinase Mechanism.
    Fujieda N; Umakoshi K; Ochi Y; Nishikawa Y; Yanagisawa S; Kubo M; Kurisu G; Itoh S
    Angew Chem Int Ed Engl; 2020 Aug; 59(32):13385-13390. PubMed ID: 32356371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.