These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 20653039)
1. Suppression of fibrotic scar formation promotes axonal regeneration without disturbing blood-brain barrier repair and withdrawal of leukocytes after traumatic brain injury. Yoshioka N; Hisanaga S; Kawano H J Comp Neurol; 2010 Sep; 518(18):3867-81. PubMed ID: 20653039 [TBL] [Abstract][Full Text] [Related]
2. Regeneration of nigrostriatal dopaminergic axons after transplantation of olfactory ensheathing cells and fibroblasts prevents fibrotic scar formation at the lesion site. Teng X; Nagata I; Li HP; Kimura-Kuroda J; Sango K; Kawamura K; Raisman G; Kawano H J Neurosci Res; 2008 Nov; 86(14):3140-50. PubMed ID: 18615647 [TBL] [Abstract][Full Text] [Related]
3. Regeneration of nigrostriatal dopaminergic axons by degradation of chondroitin sulfate is accompanied by elimination of the fibrotic scar and glia limitans in the lesion site. Li HP; Homma A; Sango K; Kawamura K; Raisman G; Kawano H J Neurosci Res; 2007 Feb; 85(3):536-47. PubMed ID: 17154415 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of collagen synthesis overrides the age-related failure of regeneration of nigrostriatal dopaminergic axons. Kawano H; Li HP; Sango K; Kawamura K; Raisman G J Neurosci Res; 2005 Apr; 80(2):191-202. PubMed ID: 15742363 [TBL] [Abstract][Full Text] [Related]
5. Small molecule inhibitor of type I transforming growth factor-β receptor kinase ameliorates the inhibitory milieu in injured brain and promotes regeneration of nigrostriatal dopaminergic axons. Yoshioka N; Kimura-Kuroda J; Saito T; Kawamura K; Hisanaga S; Kawano H J Neurosci Res; 2011 Mar; 89(3):381-93. PubMed ID: 21259325 [TBL] [Abstract][Full Text] [Related]
6. Spontaneous regeneration of the corticospinal tract after transection in young rats: collagen type IV deposition and astrocytic scar in the lesion site are not the cause but the effect of failure of regeneration. Iseda T; Nishio T; Kawaguchi S; Kawasaki T; Wakisaka S J Comp Neurol; 2003 Sep; 464(3):343-55. PubMed ID: 12900928 [TBL] [Abstract][Full Text] [Related]
7. The collagenous lesion scar--an obstacle for axonal regeneration in brain and spinal cord injury. Hermanns S; Klapka N; Müller HW Restor Neurol Neurosci; 2001; 19(1-2):139-48. PubMed ID: 12082234 [TBL] [Abstract][Full Text] [Related]
9. Roles of chondroitin sulfate and dermatan sulfate in the formation of a lesion scar and axonal regeneration after traumatic injury of the mouse brain. Li HP; Komuta Y; Kimura-Kuroda J; van Kuppevelt TH; Kawano H J Neurotrauma; 2013 Mar; 30(5):413-25. PubMed ID: 23438307 [TBL] [Abstract][Full Text] [Related]
10. Growth-modulating molecules are associated with invading Schwann cells and not astrocytes in human traumatic spinal cord injury. Buss A; Pech K; Kakulas BA; Martin D; Schoenen J; Noth J; Brook GA Brain; 2007 Apr; 130(Pt 4):940-53. PubMed ID: 17314203 [TBL] [Abstract][Full Text] [Related]
11. N-Acetylglucosamine 6-O-sulfotransferase-1 is required for brain keratan sulfate biosynthesis and glial scar formation after brain injury. Zhang H; Muramatsu T; Murase A; Yuasa S; Uchimura K; Kadomatsu K Glycobiology; 2006 Aug; 16(8):702-10. PubMed ID: 16624895 [TBL] [Abstract][Full Text] [Related]
12. Brain keratan sulfate and glial scar formation. Zhang H; Uchimura K; Kadomatsu K Ann N Y Acad Sci; 2006 Nov; 1086():81-90. PubMed ID: 17185507 [TBL] [Abstract][Full Text] [Related]
13. Attenuation of glial scar formation in the injured rat brain by heparin oligosaccharides. Hayashi N; Miyata S; Kariya Y; Takano R; Hara S; Kamei K Neurosci Res; 2004 May; 49(1):19-27. PubMed ID: 15099700 [TBL] [Abstract][Full Text] [Related]
14. Robust regeneration of CNS axons through a track depleted of CNS glia. Moon LD; Brecknell JE; Franklin RJ; Dunnett SB; Fawcett JW Exp Neurol; 2000 Jan; 161(1):49-66. PubMed ID: 10683273 [TBL] [Abstract][Full Text] [Related]
15. Altered CNS response to injury in the MRL/MpJ mouse. Hampton DW; Seitz A; Chen P; Heber-Katz E; Fawcett JW Neuroscience; 2004; 127(4):821-32. PubMed ID: 15312895 [TBL] [Abstract][Full Text] [Related]
16. Expression of the gene encoding the chemorepellent semaphorin III is induced in the fibroblast component of neural scar tissue formed following injuries of adult but not neonatal CNS. Pasterkamp RJ; Giger RJ; Ruitenberg MJ; Holtmaat AJ; De Wit J; De Winter F; Verhaagen J Mol Cell Neurosci; 1999 Feb; 13(2):143-66. PubMed ID: 10192772 [TBL] [Abstract][Full Text] [Related]
17. Pharmacological modification of the extracellular matrix to promote regeneration of the injured brain and spinal cord. Brazda N; Müller HW Prog Brain Res; 2009; 175():269-81. PubMed ID: 19660662 [TBL] [Abstract][Full Text] [Related]
18. Elimination of basal lamina and the collagen "scar" after spinal cord injury fails to augment corticospinal tract regeneration. Weidner N; Grill RJ; Tuszynski MH Exp Neurol; 1999 Nov; 160(1):40-50. PubMed ID: 10630189 [TBL] [Abstract][Full Text] [Related]
19. Transplants of immature astrocytes promote axonal regeneration in the adult rat brain. Wunderlich G; Stichel CC; Schroeder WO; Müller HW Glia; 1994 Jan; 10(1):49-58. PubMed ID: 7507887 [TBL] [Abstract][Full Text] [Related]
20. Tumor necrosis factor superfamily member APRIL contributes to fibrotic scar formation after spinal cord injury. Funk LH; Hackett AR; Bunge MB; Lee JK J Neuroinflammation; 2016 Apr; 13(1):87. PubMed ID: 27098833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]