BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 20653766)

  • 21. Identification of the genes that contribute to lactate utilization in Helicobacter pylori.
    Iwatani S; Nagashima H; Reddy R; Shiota S; Graham DY; Yamaoka Y
    PLoS One; 2014; 9(7):e103506. PubMed ID: 25078575
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Utilization of host-derived cysteine-containing peptides overcomes the restricted sulphur metabolism of Campylobacter jejuni.
    Vorwerk H; Mohr J; Huber C; Wensel O; Schmidt-Hohagen K; Gripp E; Josenhans C; Schomburg D; Eisenreich W; Hofreuter D
    Mol Microbiol; 2014 Sep; 93(6):1224-45. PubMed ID: 25074326
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Roles of d-Lactate Dehydrogenases in the Anaerobic Growth of
    Kasai T; Suzuki Y; Kouzuma A; Watanabe K
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30504209
    [No Abstract]   [Full Text] [Related]  

  • 24. Functional characterization of excision repair and RecA-dependent recombinational DNA repair in Campylobacter jejuni.
    Gaasbeek EJ; van der Wal FJ; van Putten JP; de Boer P; van der Graaf-van Bloois L; de Boer AG; Vermaning BJ; Wagenaar JA
    J Bacteriol; 2009 Jun; 191(12):3785-93. PubMed ID: 19376866
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Campylobacter jejuni proteins Cj0952c and Cj0951c affect chemotactic behaviour towards formic acid and are important for invasion of host cells.
    Tareen AM; Dasti JI; Zautner AE; Groß U; Lugert R
    Microbiology (Reading); 2010 Oct; 156(Pt 10):3123-3135. PubMed ID: 20656782
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contribution of the stereospecific methionine sulphoxide reductases MsrA and MsrB to oxidative and nitrosative stress resistance in the food-borne pathogen Campylobacter jejuni.
    Atack JM; Kelly DJ
    Microbiology (Reading); 2008 Aug; 154(Pt 8):2219-2230. PubMed ID: 18667555
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of a novel membrane transporter mediating resistance to organic arsenic in Campylobacter jejuni.
    Shen Z; Luangtongkum T; Qiang Z; Jeon B; Wang L; Zhang Q
    Antimicrob Agents Chemother; 2014; 58(4):2021-9. PubMed ID: 24419344
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two NAD-independent l-lactate dehydrogenases drive l-lactate utilization in Pseudomonas aeruginosa PAO1.
    Wang Y; Xiao D; Liu Q; Zhang Y; Hu C; Sun J; Yang C; Xu P; Ma C; Gao C
    Environ Microbiol Rep; 2018 Oct; 10(5):569-575. PubMed ID: 30066495
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Campylobacter jejuni NADH:ubiquinone oxidoreductase (complex I) utilizes flavodoxin rather than NADH.
    Weerakoon DR; Olson JW
    J Bacteriol; 2008 Feb; 190(3):915-25. PubMed ID: 18065531
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Cotransformation Method To Identify a Restriction-Modification Enzyme That Reduces Conjugation Efficiency in Campylobacter jejuni.
    Zeng X; Wu Z; Zhang Q; Lin J
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30242003
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MCLMAN, a new minimal medium for Campylobacter jejuni NCTC 11168.
    Alazzam B; Bonnassie-Rouxin S; Dufour V; Ermel G
    Res Microbiol; 2011; 162(2):173-9. PubMed ID: 21144899
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heme utilization in Campylobacter jejuni.
    Ridley KA; Rock JD; Li Y; Ketley JM
    J Bacteriol; 2006 Nov; 188(22):7862-75. PubMed ID: 16980451
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Major role for FeoB in Campylobacter jejuni ferrous iron acquisition, gut colonization, and intracellular survival.
    Naikare H; Palyada K; Panciera R; Marlow D; Stintzi A
    Infect Immun; 2006 Oct; 74(10):5433-44. PubMed ID: 16988218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formate dehydrogenase localization and activity are dependent on an intact twin arginine translocation system (Tat) in Campylobacter jejuni 81-176.
    Kassem II; Rajashekara G
    Foodborne Pathog Dis; 2014 Dec; 11(12):917-9. PubMed ID: 25268895
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduction of fumarate, mesaconate and crotonate by Mfr, a novel oxygen-regulated periplasmic reductase in Campylobacter jejuni.
    Guccione E; Hitchcock A; Hall SJ; Mulholland F; Shearer N; van Vliet AH; Kelly DJ
    Environ Microbiol; 2010 Mar; 12(3):576-91. PubMed ID: 19919540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of respiratory donor enzymes in Campylobacter jejuni host colonization and physiology.
    Weerakoon DR; Borden NJ; Goodson CM; Grimes J; Olson JW
    Microb Pathog; 2009 Jul; 47(1):8-15. PubMed ID: 19397993
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple N-acetyl neuraminic acid synthetase (neuB) genes in Campylobacter jejuni: identification and characterization of the gene involved in sialylation of lipo-oligosaccharide.
    Linton D; Karlyshev AV; Hitchen PG; Morris HR; Dell A; Gregson NA; Wren BW
    Mol Microbiol; 2000 Mar; 35(5):1120-34. PubMed ID: 10712693
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Multicopper oxidase (Cj1516) and a CopA homologue (Cj1161) are major components of the copper homeostasis system of Campylobacter jejuni.
    Hall SJ; Hitchcock A; Butler CS; Kelly DJ
    J Bacteriol; 2008 Dec; 190(24):8075-85. PubMed ID: 18931123
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular, antigenic, and functional characteristics of ferric enterobactin receptor CfrA in Campylobacter jejuni.
    Zeng X; Xu F; Lin J
    Infect Immun; 2009 Dec; 77(12):5437-48. PubMed ID: 19737895
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification and characterization of a new ferric enterobactin receptor, CfrB, in Campylobacter.
    Xu F; Zeng X; Haigh RD; Ketley JM; Lin J
    J Bacteriol; 2010 Sep; 192(17):4425-35. PubMed ID: 20585060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.