These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 20653893)

  • 1. Growth in epiphytic bromeliads: response to the relative supply of phosphorus and nitrogen.
    Zotz G; Asshoff R
    Plant Biol (Stuttg); 2010 Jan; 12(1):108-13. PubMed ID: 20653893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are vascular epiphytes nitrogen or phosphorus limited? A study of plant (15) N fractionation and foliar N : P stoichiometry with the tank bromeliad Vriesea sanguinolenta.
    Wanek W; Zotz G
    New Phytol; 2011 Oct; 192(2):462-70. PubMed ID: 21729088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epiphytic bromeliads in a changing world: the effect of elevated CO
    Wagner K; Zotz G
    Plant Biol (Stuttg); 2018 May; 20(3):636-640. PubMed ID: 29427326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen:Phosphorus supply ratio may control the protein and total toxin of dinoflagellate Alexandrium tamarense.
    Murata A; Leong SC; Nagashima Y; Taguchi S
    Toxicon; 2006 Nov; 48(6):683-9. PubMed ID: 16997341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nutrient limitation restricts growth and reproductive output in a tropical montane cloud forest bromeliad: findings from a long-term forest fertilization experiment.
    Lasso E; Ackerman JD
    Oecologia; 2013 Jan; 171(1):165-74. PubMed ID: 22767363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in carbohydrate and nutrient contents throughout a reproductive cycle indicate that phosphorus is a limiting nutrient in the epiphytic bromeliad, Werauhia sanguinolenta.
    Zotz G; Richter A
    Ann Bot; 2006 May; 97(5):745-54. PubMed ID: 16497701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactive effects of nitrogen and phosphorus loadings on nutrient removal from simulated wastewater using Schoenoplectus validus in wetland microcosms.
    Zhang Z; Rengel Z; Meney K
    Chemosphere; 2008 Aug; 72(11):1823-8. PubMed ID: 18561977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing the growth rate vs. geochemical hypothesis for latitudinal variation in plant nutrients.
    Lovelock CE; Feller IC; Ball MC; Ellis J; Sorrell B
    Ecol Lett; 2007 Dec; 10(12):1154-63. PubMed ID: 17927772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutrient availability constrains the hydraulic architecture and water relations of savannah trees.
    Bucci SJ; Scholz FG; Goldstein G; Meinzer FC; Franco AC; Campanello PI; Villalobos-Vega R; Bustamante M; Miralles-Wilhelm F
    Plant Cell Environ; 2006 Dec; 29(12):2153-67. PubMed ID: 17081249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly efficient uptake of phosphorus in epiphytic bromeliads.
    Winkler U; Zotz G
    Ann Bot; 2009 Feb; 103(3):477-84. PubMed ID: 19033287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nutrient recycling affects autotroph and ecosystem stoichiometry.
    Ballantyne F; Menge DN; Ostling A; Hosseini P
    Am Nat; 2008 Apr; 171(4):511-23. PubMed ID: 20374138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water supply changes N and P conservation in a perennial grass Leymus chinensis.
    Huang JY; Yu HL; Li LH; Yuan ZY; Bartels S
    J Integr Plant Biol; 2009 Nov; 51(11):1050-6. PubMed ID: 19903226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen- vs. phosphorus-based dairy manure applications to field crops: nitrate and phosphorus leaching and soil phosphorus accumulation.
    Toth JD; Dou Z; Ferguson JD; Galligan DT; Ramberg CF
    J Environ Qual; 2006; 35(6):2302-12. PubMed ID: 17071901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What is the proximate cause for size-dependent ecophysiological differences in vascular epiphytes?
    Zotz G; Schmidt G; Mikona C
    Plant Biol (Stuttg); 2011 Nov; 13(6):902-8. PubMed ID: 21973121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demographic effects of harvesting epiphytic bromeliads and an alternative approach to collection.
    Chaparro DM; Ticktin T
    Conserv Biol; 2011 Aug; 25(4):797-807. PubMed ID: 21658129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stoichiometry, herbivory and competition for nutrients: simple models based on planktonic ecosystems.
    Grover JP
    J Theor Biol; 2002 Feb; 214(4):599-618. PubMed ID: 11851370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms.
    Fraser LH; Carty SM; Steer D
    Bioresour Technol; 2004 Sep; 94(2):185-92. PubMed ID: 15158511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predators accelerate nutrient cycling in a bromeliad ecosystem.
    Ngai JT; Srivastava DS
    Science; 2006 Nov; 314(5801):963. PubMed ID: 17095695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen enrichment and plant communities.
    Cleland EE; Harpole WS
    Ann N Y Acad Sci; 2010 May; 1195():46-61. PubMed ID: 20536816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of N and P supply and genotype on carbon flux and partitioning in potted Pinus radiata plants.
    Bown HE; Watt MS; Clinton PW; Mason EG; Whitehead D
    Tree Physiol; 2009 Jul; 29(7):857-68. PubMed ID: 19448265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.