These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 20653971)
1. Investigation of the chaperone function of the small heat shock protein-AgsA. Tomoyasu T; Tabata A; Nagamune H BMC Biochem; 2010 Jul; 11():27. PubMed ID: 20653971 [TBL] [Abstract][Full Text] [Related]
2. The Function of Ile-X-Ile Motif in the Oligomerization and Chaperone-Like Activity of Small Heat Shock Protein AgsA at Room Temperature. Zhou Q; Shi X; Zhang K; Shi C; Huang L; Chang Z Protein J; 2016 Dec; 35(6):401-406. PubMed ID: 27812886 [TBL] [Abstract][Full Text] [Related]
3. Small heat shock protein AgsA forms dynamic fibrils. Shi X; Wang Z; Yan L; Ezemaduka AN; Fan G; Wang R; Fu X; Yin C; Chang Z FEBS Lett; 2011 Nov; 585(21):3396-402. PubMed ID: 22001209 [TBL] [Abstract][Full Text] [Related]
4. AgsA oligomer acts as a functional unit. Liu D; Chen Q; Zhang L; Hu H; Yin C Biochem Biophys Res Commun; 2020 Sep; 530(1):22-28. PubMed ID: 32828289 [TBL] [Abstract][Full Text] [Related]
5. A new heat shock gene, AgsA, which encodes a small chaperone involved in suppressing protein aggregation in Salmonella enterica serovar typhimurium. Tomoyasu T; Takaya A; Sasaki T; Nagase T; Kikuno R; Morioka M; Yamamoto T J Bacteriol; 2003 Nov; 185(21):6331-9. PubMed ID: 14563868 [TBL] [Abstract][Full Text] [Related]
6. Structure, stability, and chaperone function of alphaA-crystallin: role of N-terminal region. Kundu M; Sen PC; Das KP Biopolymers; 2007 Jun; 86(3):177-92. PubMed ID: 17345631 [TBL] [Abstract][Full Text] [Related]
7. Effect of phosphorylation on alpha B-crystallin: differences in stability, subunit exchange and chaperone activity of homo and mixed oligomers of alpha B-crystallin and its phosphorylation-mimicking mutant. Ahmad MF; Raman B; Ramakrishna T; Rao ChM J Mol Biol; 2008 Jan; 375(4):1040-51. PubMed ID: 18061612 [TBL] [Abstract][Full Text] [Related]
8. Heterologous expression of AgsA enhances Escherichia coli tolerance to the combined effect of elevated temperature and Zinc toxicity. Ezemaduka AN; Lv Y; Wang Y; Xu J; Li X J Therm Biol; 2018 Feb; 72():137-142. PubMed ID: 29496006 [TBL] [Abstract][Full Text] [Related]
9. StHsp14.0, a small heat shock protein of Sulfolobus tokodaii strain 7, protects denatured proteins from aggregation in the partially dissociated conformation. Abe T; Oka T; Nakagome A; Tsukada Y; Yasunaga T; Yohda M J Biochem; 2011 Oct; 150(4):403-9. PubMed ID: 21659385 [TBL] [Abstract][Full Text] [Related]
10. Small heat shock protein AgsA: an effective stabilizer of enzyme activities. Tomoyasu T; Tabata A; Ishikawa Y; Whiley RA; Nagamune H J Biosci Bioeng; 2013 Jan; 115(1):15-9. PubMed ID: 22929984 [TBL] [Abstract][Full Text] [Related]
11. AgsA response to cadmium and copper effects at different temperatures in Escherichia coli. Lv Y; Ezemaduka AN; Wang Y; Xu J; Li X J Biochem Mol Toxicol; 2019 Aug; 33(8):e22344. PubMed ID: 31211484 [TBL] [Abstract][Full Text] [Related]
12. The function of the beta3 interactive domain in the small heat shock protein and molecular chaperone, human alphaB crystallin. Ghosh JG; Estrada MR; Houck SA; Clark JI Cell Stress Chaperones; 2006; 11(2):187-97. PubMed ID: 16817325 [TBL] [Abstract][Full Text] [Related]
13. Small heat shock proteins prevent aggregation of citrate synthase and bind to the N-terminal region which is absent in thermostable forms of citrate synthase. Ahrman E; Gustavsson N; Hultschig C; Boelens WC; Emanuelsson CS Extremophiles; 2007 Sep; 11(5):659-66. PubMed ID: 17486291 [TBL] [Abstract][Full Text] [Related]
14. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. Lee GJ; Roseman AM; Saibil HR; Vierling E EMBO J; 1997 Feb; 16(3):659-71. PubMed ID: 9034347 [TBL] [Abstract][Full Text] [Related]
15. Chaperone action of a versatile small heat shock protein from Methanococcoides burtonii, a cold adapted archaeon. Laksanalamai P; Narayan S; Luo H; Robb FT Proteins; 2009 May; 75(2):275-81. PubMed ID: 18951410 [TBL] [Abstract][Full Text] [Related]
16. Biochemical and biophysical characterization of small heat shock proteins from sugarcane. Involvement of a specific region located at the N-terminus with substrate specificity. Tiroli AO; Ramos CH Int J Biochem Cell Biol; 2007; 39(4):818-31. PubMed ID: 17336576 [TBL] [Abstract][Full Text] [Related]
17. Chemical cross-linking of the chloroplast localized small heat-shock protein, Hsp21, and the model substrate citrate synthase. Ahrman E; Lambert W; Aquilina JA; Robinson CV; Emanuelsson CS Protein Sci; 2007 Jul; 16(7):1464-78. PubMed ID: 17567739 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of citrate synthase thermal aggregation in vitro by recombinant small heat shock proteins. Gong W; Yue M; Xie B; Wan F; Guo J J Microbiol Biotechnol; 2009 Dec; 19(12):1628-34. PubMed ID: 20075630 [TBL] [Abstract][Full Text] [Related]
19. The essential role of the flexible termini in the temperature-responsiveness of the oligomeric state and chaperone-like activity for the polydisperse small heat shock protein IbpB from Escherichia coli. Jiao W; Qian M; Li P; Zhao L; Chang Z J Mol Biol; 2005 Apr; 347(4):871-84. PubMed ID: 15769476 [TBL] [Abstract][Full Text] [Related]
20. Role of Molecular Interactions and Oligomerization in Chaperone Activity of Recombinant Acr from Krishnan G; Roy U Iran J Biotechnol; 2019 Sep; 17(3):e2370. PubMed ID: 32195287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]