These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 20654602)
1. Detection of lactobacillic acid in low erucic rapeseed oil--A note of caution when quantifying cyclic fatty acid monomers in vegetable oils. Berdeaux O; Gregoire S; Fournier C; Christie WW; Lambelet P; Sébédio JL Chem Phys Lipids; 2010 Sep; 163(7):698-702. PubMed ID: 20654602 [TBL] [Abstract][Full Text] [Related]
2. Isolation and structural analysis of the cyclic fatty acid monomers formed from eicosapentaenoic and docosahexaenoic acids during fish oil deodorization. Berdeaux O; Fournier V; Lambelet P; Dionisi F; Sébédio JL; Destaillats F J Chromatogr A; 2007 Jan; 1138(1-2):216-24. PubMed ID: 17113094 [TBL] [Abstract][Full Text] [Related]
3. Formation of modified fatty acids and oxyphytosterols during refining of low erucic acid rapeseed oil. Lambelet P; Grandgirard A; Gregoire S; Juaneda P; Sebedio JL; Bertoli C J Agric Food Chem; 2003 Jul; 51(15):4284-90. PubMed ID: 12848499 [TBL] [Abstract][Full Text] [Related]
4. Exploring the fatty acids of vernix caseosa in form of their methyl esters by off-line coupling of non-aqueous reversed phase high performance liquid chromatography and gas chromatography coupled to mass spectrometry. Hauff S; Vetter W J Chromatogr A; 2010 Dec; 1217(52):8270-8. PubMed ID: 21087771 [TBL] [Abstract][Full Text] [Related]
5. Utilization of high-performance liquid chromatography as an enrichment step for the determination of cyclic fatty acid monomers in heated fats and biological samples. Sebedio JL; Prevost J; Ribot E; Grandgirard A J Chromatogr A; 1994 Jan; 659(1):101-9. PubMed ID: 8118554 [TBL] [Abstract][Full Text] [Related]
6. LC-MS ion maps for the characterization of aniline derivatives of fatty acids and triglycerides in laboratory-denatured rapeseed oil. Reig N; Calaf RE; Messeguer A; Morató A; Escabros J; Gelpí E; Abian J J Mass Spectrom; 2007 Apr; 42(4):527-41. PubMed ID: 17295417 [TBL] [Abstract][Full Text] [Related]
7. Rumen biohydrogenation-derived fatty acids in milk fat from grazing dairy cows supplemented with rapeseed, sunflower, or linseed oils. Rego OA; Alves SP; Antunes LM; Rosa HJ; Alfaia CF; Prates JA; Cabrita AR; Fonseca AJ; Bessa RJ J Dairy Sci; 2009 Sep; 92(9):4530-40. PubMed ID: 19700715 [TBL] [Abstract][Full Text] [Related]
8. Monitoring of glycidyl fatty acid esters in refined vegetable oils from retail outlets by LC-MS. Aniołowska M; Kita A J Sci Food Agric; 2016 Sep; 96(12):4056-61. PubMed ID: 26711530 [TBL] [Abstract][Full Text] [Related]
9. Application of random forests to select premium quality vegetable oils by their fatty acid composition. Ai FF; Bin J; Zhang ZM; Huang JH; Wang JB; Liang YZ; Yu L; Yang ZY Food Chem; 2014 Jan; 143():472-8. PubMed ID: 24054269 [TBL] [Abstract][Full Text] [Related]
10. Creation and evaluation of a two-dimensional contour plot of fatty acid methyl esters after off-line coupling of reversed-phase HPLC and GC/EI-MS. Hauff S; Vetter W Anal Bioanal Chem; 2010 Apr; 396(7):2695-707. PubMed ID: 20155411 [TBL] [Abstract][Full Text] [Related]
11. Feeding of partially hydrogenated fish oils to rats in comparison with partially hydrogenated soybean oil and refined rapeseed oil: a combined chronic oral toxicity and carcinogenicity study with in utero phase. Duthie IF; Barlow SM; Ashby R; Tesh JM; Whitney JC; Saunders A; Chapman E; Norum KR; Svaar H; Opstvedt J Acta Med Scand Suppl; 1988; 726():1-89. PubMed ID: 3188993 [TBL] [Abstract][Full Text] [Related]
12. Gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry of cyclic fatty acid monomers isolated from heated fats. Le Quéré JL; Sébédio JL; Henry R; Couderc F; Demont N; Promé JC J Chromatogr; 1991 Jan; 562(1-2):659-72. PubMed ID: 2026728 [TBL] [Abstract][Full Text] [Related]
13. [Fast analysis of common fatty acids in edible vegetable oils by ultra-performance convergence chromatography-mass spectrometry]. Lin C; Xie X; Fan N; Tu Y; Chen Y; Liao W Se Pu; 2015 Apr; 33(4):397-402. PubMed ID: 26292410 [TBL] [Abstract][Full Text] [Related]
14. Profiling fatty acids in vegetable oils by reactive pyrolysis-gas chromatography with dimethyl carbonate and titanium silicate. Fabbri D; Baravelli V; Chiavari G; Prati S J Chromatogr A; 2005 Dec; 1100(2):218-22. PubMed ID: 16216255 [TBL] [Abstract][Full Text] [Related]
15. Fatty acids in Chinese edible oils: value of direct analysis as a basis for labeling. Wallingford JC; Yuhas R; Du S; Zhai F; Popkin BM Food Nutr Bull; 2004 Dec; 25(4):330-6. PubMed ID: 15646310 [TBL] [Abstract][Full Text] [Related]
16. [Determination of fatty acids in Malania oleifera oil by gas chromatography-mass spectrometry]. Zhou YH; Li WG; Yi FP; Liu XM Se Pu; 2001 Mar; 19(2):147-8. PubMed ID: 12541659 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous quantification of epoxy and hydroxy fatty acids as oxidation products of triacylglycerols in edible oils. Xia W; Budge SM J Chromatogr A; 2018 Feb; 1537():83-90. PubMed ID: 29370919 [TBL] [Abstract][Full Text] [Related]
18. [Studies on the spectrum of tea seed oily properties]. Shi YD; Jia L; Li X; Ma JZ; Liu F; Shen TB Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Sep; 30(9):2504-7. PubMed ID: 21105428 [TBL] [Abstract][Full Text] [Related]
19. Triacylglycerol analysis of potential margarine base stocks by high-performance liquid chromatography with atmospheric pressure chemical ionization mass spectrometry and flame ionization detection. Byrdwell WC; Neff WE; List GR J Agric Food Chem; 2001 Jan; 49(1):446-57. PubMed ID: 11170612 [TBL] [Abstract][Full Text] [Related]
20. Identification of the double-bond position in fatty acid methyl esters by liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry. Vrkoslav V; Cvačka J J Chromatogr A; 2012 Oct; 1259():244-50. PubMed ID: 22591660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]