These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 20654674)

  • 1. Chemical safety of cassava products in regions adopting cassava production and processing--experience from Southern Africa.
    Nyirenda DB; Chiwona-Karltun L; Chitundu M; Haggblade S; Brimer L
    Food Chem Toxicol; 2011 Mar; 49(3):607-12. PubMed ID: 20654674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The retail market for fresh cassava root tubers in the European Union (EU): the case of Copenhagen, Denmark--a chemical food safety issue?
    Kolind-Hansen L; Brimer L
    J Sci Food Agric; 2010 Jan; 90(2):252-6. PubMed ID: 20355039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant tissue analysis as a tool for predicting fertiliser needs for low cyanogenic glucoside levels in cassava roots: An assessment of its possible use.
    Imakumbili MLE; Semu E; Semoka JMR; Abass A; Mkamilo G
    PLoS One; 2020; 15(2):e0228641. PubMed ID: 32053630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies for elimination of cyanogens from cassava for reducing toxicity and improving food safety.
    Nambisan B
    Food Chem Toxicol; 2011 Mar; 49(3):690-3. PubMed ID: 21074593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Food safety: importance of composition for assessing genetically modified cassava (Manihot esculenta Crantz).
    van Rijssen FW; Morris EJ; Eloff JN
    J Agric Food Chem; 2013 Sep; 61(35):8333-9. PubMed ID: 23899040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The toxic effects of cassava (manihot esculenta grantz) diets on humans: a review.
    Aregheore EM; Agunbiade OO
    Vet Hum Toxicol; 1991 Jun; 33(3):274-5. PubMed ID: 1650055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient treatment for detoxification process of cassava starch by plant cell wall-degrading enzymes.
    Sornyotha S; Kyu KL; Ratanakhanokchai K
    J Biosci Bioeng; 2010 Jan; 109(1):9-14. PubMed ID: 20129074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of style of processing on retention and bioaccessibility of beta-carotene in cassava (Manihot esculanta, Crantz).
    Thakkar SK; Huo T; Maziya-Dixon B; Failla ML
    J Agric Food Chem; 2009 Feb; 57(4):1344-8. PubMed ID: 19199597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava (Manihot esculenta Crantz) roots.
    Balyejusa Kizito E; Rönnberg-Wästljung AC; Egwang T; Gullberg U; Fregene M; Westerbergh A
    Hereditas; 2007 Sep; 144(4):129-36. PubMed ID: 17850597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constituents and secondary metabolite natural products in fresh and deteriorated cassava roots.
    Bayoumi SA; Rowan MG; Beeching JR; Blagbrough IS
    Phytochemistry; 2010 Apr; 71(5-6):598-604. PubMed ID: 20137795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake of wetting method in Africa to reduce cyanide poisoning and konzo from cassava.
    Bradbury JH; Cliff J; Denton IC
    Food Chem Toxicol; 2011 Mar; 49(3):539-42. PubMed ID: 20510334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High cassava production and low dietary cyanide exposure in mid-west Nigeria.
    Onabolu A; Bokanga M; Tylleskär T; Rosling H
    Public Health Nutr; 2001 Feb; 4(1):3-9. PubMed ID: 11255490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In field damage of high and low cyanogenic cassava due to a generalist insect herbivore Cyrtomenus bergi (Hemiptera: Cydnidae).
    Riis L; Bellotti AC; Castaño O
    J Econ Entomol; 2003 Dec; 96(6):1915-21. PubMed ID: 14977133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyanogenic potential of cassava peels and their detoxification for utilization as livestock feed.
    Tweyongyere R; Katongole I
    Vet Hum Toxicol; 2002 Dec; 44(6):366-9. PubMed ID: 12458644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low cyanide exposure from consumption of cassava in Dar es Salaam, Tanzania.
    Mlingi N; Abrahamsson M; Yuen J; Gebre-Medhin M; Rosling H
    Nat Toxins; 1998; 6(2):67-72. PubMed ID: 9888632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Souring and breakdown of cyanogenic glucosides during the processing of cassava into akyeke.
    Obilie EM; Tano-Debrah K; Amoa-Awua WK
    Int J Food Microbiol; 2004 May; 93(1):115-21. PubMed ID: 15135588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of traditional processing of cassava on the cyanide content of gari and cassava flour.
    Kemdirim OC; Chukwu OA; Achinewhu SC
    Plant Foods Hum Nutr; 1995 Dec; 48(4):335-9. PubMed ID: 8882371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low dietary cyanogen exposure from frequent consumption of potentially toxic cassava in Malawi.
    Chiwona-Karltun L; Tylleskär T; Mkumbira J; Gebre-Medhin M; Rosling H
    Int J Food Sci Nutr; 2000 Jan; 51(1):33-43. PubMed ID: 10746103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurotoxic effect of linamarin in rats associated with cassava (Manihot esculenta Crantz) consumption.
    Rivadeneyra-Domínguez E; Vázquez-Luna A; Rodríguez-Landa JF; Díaz-Sobac R
    Food Chem Toxicol; 2013 Sep; 59():230-5. PubMed ID: 23778051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in scopoletin concentration in cassava chips from four varieties during storage.
    Gnonlonfin BG; Gbaguidi F; Gbenou JD; Sanni A; Brimer L
    J Sci Food Agric; 2011 Oct; 91(13):2344-7. PubMed ID: 21604276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.