These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 20654743)
1. Bioconversion of vitamin D to its active form by bacterial or mammalian cytochrome P450. Sakaki T; Sugimoto H; Hayashi K; Yasuda K; Munetsuna E; Kamakura M; Ikushiro S; Shiro Y Biochim Biophys Acta; 2011 Jan; 1814(1):249-56. PubMed ID: 20654743 [TBL] [Abstract][Full Text] [Related]
2. Molecular characterization, modeling and docking of CYP107CB2 from Bacillus lehensis G1, an alkaliphile. Ang SS; Salleh AB; Chor AL; Normi YM; Tejo BA; Rahman MB Comput Biol Chem; 2015 Jun; 56():19-29. PubMed ID: 25766878 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of CYP105A1 (P450SU-1) in complex with 1alpha,25-dihydroxyvitamin D3. Sugimoto H; Shinkyo R; Hayashi K; Yoneda S; Yamada M; Kamakura M; Ikushiro S; Shiro Y; Sakaki T Biochemistry; 2008 Apr; 47(13):4017-27. PubMed ID: 18314962 [TBL] [Abstract][Full Text] [Related]
4. Structure-based design of a highly active vitamin D hydroxylase from Streptomyces griseolus CYP105A1. Hayashi K; Sugimoto H; Shinkyo R; Yamada M; Ikeda S; Ikushiro S; Kamakura M; Shiro Y; Sakaki T Biochemistry; 2008 Nov; 47(46):11964-72. PubMed ID: 18937506 [TBL] [Abstract][Full Text] [Related]
5. Production of an active form of vitamin D Yasuda K; Yogo Y; Sugimoto H; Mano H; Takita T; Ohta M; Kamakura M; Ikushiro S; Yasukawa K; Shiro Y; Sakaki T Biochem Biophys Res Commun; 2017 Apr; 486(2):336-341. PubMed ID: 28302483 [TBL] [Abstract][Full Text] [Related]
6. Three-step hydroxylation of vitamin D3 by a genetically engineered CYP105A1: enzymes and catalysis. Hayashi K; Yasuda K; Sugimoto H; Ikushiro S; Kamakura M; Kittaka A; Horst RL; Chen TC; Ohta M; Shiro Y; Sakaki T FEBS J; 2010 Oct; 277(19):3999-4009. PubMed ID: 20731719 [TBL] [Abstract][Full Text] [Related]
7. Biochemical Characterization of the Cytochrome P450 CYP107CB2 from Bacillus lehensis G1. Ang SS; Salleh AB; Chor LT; Normi YM; Tejo BA; Rahman MBA; Fatima MA Protein J; 2018 Apr; 37(2):180-193. PubMed ID: 29508210 [TBL] [Abstract][Full Text] [Related]
8. Directed evolution of cytochrome P450 enzymes for biocatalysis: exploiting the catalytic versatility of enzymes with relaxed substrate specificity. Behrendorff JB; Huang W; Gillam EM Biochem J; 2015 Apr; 467(1):1-15. PubMed ID: 25793416 [TBL] [Abstract][Full Text] [Related]
9. Conversion of vitamin D3 to 1alpha,25-dihydroxyvitamin D3 by Streptomyces griseolus cytochrome P450SU-1. Sawada N; Sakaki T; Yoneda S; Kusudo T; Shinkyo R; Ohta M; Inouye K Biochem Biophys Res Commun; 2004 Jul; 320(1):156-64. PubMed ID: 15207715 [TBL] [Abstract][Full Text] [Related]
10. Resin acid conversion with CYP105A1: an enzyme with potential for the production of pharmaceutically relevant diterpenoids. Janocha S; Zapp J; Hutter M; Kleser M; Bohlmann J; Bernhardt R Chembiochem; 2013 Mar; 14(4):467-73. PubMed ID: 23371760 [TBL] [Abstract][Full Text] [Related]
11. Expression and activity of vitamin D-metabolizing cytochrome P450s (CYP1alpha and CYP24) in human nonsmall cell lung carcinomas. Jones G; Ramshaw H; Zhang A; Cook R; Byford V; White J; Petkovich M Endocrinology; 1999 Jul; 140(7):3303-10. PubMed ID: 10385427 [TBL] [Abstract][Full Text] [Related]
12. Sequential hydroxylation of vitamin D2 by a genetically engineered CYP105A1. Hayashi K; Yasuda K; Yogo Y; Takita T; Yasukawa K; Ohta M; Kamakura M; Ikushiro S; Sakaki T Biochem Biophys Res Commun; 2016 May; 473(4):853-858. PubMed ID: 27037023 [TBL] [Abstract][Full Text] [Related]
13. [Recent studies on vitamin D metabolizing enzymes]. Sakaki T Clin Calcium; 2006 Jul; 16(7):1129-35. PubMed ID: 16816472 [TBL] [Abstract][Full Text] [Related]
14. Purification, characterization, and directed evolution study of a vitamin D3 hydroxylase from Pseudonocardia autotrophica. Fujii Y; Kabumoto H; Nishimura K; Fujii T; Yanai S; Takeda K; Tamura N; Arisawa A; Tamura T Biochem Biophys Res Commun; 2009 Jul; 385(2):170-5. PubMed ID: 19450562 [TBL] [Abstract][Full Text] [Related]
15. The roles of cytochrome P450 enzymes in prostate cancer development and treatment. Chen TC; Sakaki T; Yamamoto K; Kittaka A Anticancer Res; 2012 Jan; 32(1):291-8. PubMed ID: 22213318 [TBL] [Abstract][Full Text] [Related]
16. Protein engineering of CYP105s for their industrial uses. Yasuda K; Sugimoto H; Hayashi K; Takita T; Yasukawa K; Ohta M; Kamakura M; Ikushiro S; Shiro Y; Sakaki T Biochim Biophys Acta Proteins Proteom; 2018 Jan; 1866(1):23-31. PubMed ID: 28583351 [TBL] [Abstract][Full Text] [Related]
17. Improving the activity of cytochrome P450 BM-3 catalyzing indole hydroxylation by directed evolution. Pengpai Z; Sheng H; Lehe M; Yinlin L; Zhihua J; Guixiang H Appl Biochem Biotechnol; 2013 Sep; 171(1):93-103. PubMed ID: 23817788 [TBL] [Abstract][Full Text] [Related]
18. Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency. Huang WC; Westlake AC; Maréchal JD; Joyce MG; Moody PC; Roberts GC J Mol Biol; 2007 Oct; 373(3):633-51. PubMed ID: 17868686 [TBL] [Abstract][Full Text] [Related]
19. Structural evidence for enhancement of sequential vitamin D3 hydroxylation activities by directed evolution of cytochrome P450 vitamin D3 hydroxylase. Yasutake Y; Fujii Y; Nishioka T; Cheon WK; Arisawa A; Tamura T J Biol Chem; 2010 Oct; 285(41):31193-201. PubMed ID: 20667833 [TBL] [Abstract][Full Text] [Related]
20. A single mutation at the ferredoxin binding site of P450 Vdh enables efficient biocatalytic production of 25-hydroxyvitamin D(3). Yasutake Y; Nishioka T; Imoto N; Tamura T Chembiochem; 2013 Nov; 14(17):2284-91. PubMed ID: 24115473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]