These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 20655051)

  • 1. A subject-specific pelvic bone model and its application to cemented acetabular replacements.
    Zhang QH; Wang JY; Lupton C; Heaton-Adegbile P; Guo ZX; Liu Q; Tong J
    J Biomech; 2010 Oct; 43(14):2722-7. PubMed ID: 20655051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro fatigue failure of cemented acetabular replacements: a hip simulator study.
    Zant NP; Heaton-Adegbile P; Hussell JG; Tong J
    J Biomech Eng; 2008 Apr; 130(2):021019. PubMed ID: 18412506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of boundary condition on the biomechanics of a human pelvic joint under an axial compressive load: a three-dimensional finite element model.
    Hao Z; Wan C; Gao X; Ji T
    J Biomech Eng; 2011 Oct; 133(10):101006. PubMed ID: 22070331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of cup outer sizes on the contact mechanics and cement fixation of cemented total hip replacements.
    Hua X; Li J; Wang L; Wilcox R; Fisher J; Jin Z
    Med Eng Phys; 2015 Oct; 37(10):1008-14. PubMed ID: 26343226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of interfacial crack and implant material on mixed-mode stress intensity factor and prediction of interface failure of cemented acetabular cup.
    Kumar A; Ghosh R; Kumar R
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):1844-1856. PubMed ID: 31769210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cement interface and bone stress in total hip arthroplasty: Relationship to head size.
    Alonso-Rasgado T; Del-Valle-Mojica JF; Jimenez-Cruz D; Bailey CG; Board TN
    J Orthop Res; 2018 Nov; 36(11):2966-2977. PubMed ID: 29774956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape optimization of metal backing for cemented acetabular cup.
    Hedia HS; Abdel-Shafi AA; Fouda N
    Biomed Mater Eng; 2000; 10(2):73-82. PubMed ID: 11086841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biomechanical study of periacetabular defects and cement filling.
    Li Z; Butala NB; Etheridge BS; Siegel HJ; Lemons JE; Eberhardt AW
    J Biomech Eng; 2007 Apr; 129(2):129-36. PubMed ID: 17408317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity to model geometry in finite element analyses of reconstructed skeletal structures: experience with a juvenile pelvis.
    Watson PJ; Fagan MJ; Dobson CA
    Proc Inst Mech Eng H; 2015 Jan; 229(1):9-19. PubMed ID: 25542612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and validation of patient-specific finite element models of the hemipelvis generated from a sparse CT data set.
    Shim VB; Pitto RP; Streicher RM; Hunter PJ; Anderson IA
    J Biomech Eng; 2008 Oct; 130(5):051010. PubMed ID: 19045517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subject-specific finite element model of the pelvis: development, validation and sensitivity studies.
    Anderson AE; Peters CL; Tuttle BD; Weiss JA
    J Biomech Eng; 2005 Jun; 127(3):364-73. PubMed ID: 16060343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the crown design and interface lute parameters on the stress-state of a machined crown-tooth system: a finite element analysis.
    Shahrbaf S; vanNoort R; Mirzakouchaki B; Ghassemieh E; Martin N
    Dent Mater; 2013 Aug; 29(8):e123-31. PubMed ID: 23706694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of cement mantle thickness on strain energy density distribution and prediction of bone density changes around cemented acetabular component.
    Sanjay D; Mondal S; Bhutani R; Ghosh R
    Proc Inst Mech Eng H; 2018 Sep; 232(9):912-921. PubMed ID: 30105942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of cup inclination and wear on the contact mechanics and cement fixation for ultra high molecular weight polyethylene total hip replacements.
    Hua X; Wroblewski BM; Jin Z; Wang L
    Med Eng Phys; 2012 Apr; 34(3):318-25. PubMed ID: 21872521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling cement augmentation: a comparative experimental and finite element study at the continuum level.
    Zhao Y; Jin ZM; Wilcox RK
    Proc Inst Mech Eng H; 2010; 224(7):903-11. PubMed ID: 20839657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Damage evolution in acetabular replacements under long-term physiological loading conditions.
    Wang JY; Heaton-Adegbile P; New A; Hussell JG; Tong J
    J Biomech; 2009 May; 42(8):1061-8. PubMed ID: 19345357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The finite element modeling of human pelvis and its application in medicolegal expertise].
    Li ZD; Zou DH; Liu NG; Huang P; Chen YJ
    Fa Yi Xue Za Zhi; 2010 Dec; 26(6):406-12. PubMed ID: 21425599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element model development of a child pelvis with optimization-based material identification.
    Kim JE; Li Z; Ito Y; Huber CD; Shih AM; Eberhardt AW; Yang KH; King AI; Soni BK
    J Biomech; 2009 Sep; 42(13):2191-5. PubMed ID: 19646702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peri-implant stress correlates with bone and cement morphology: Micro-FE modeling of implanted cadaveric glenoids.
    Wee H; Armstrong AD; Flint WW; Kunselman AR; Lewis GS
    J Orthop Res; 2015 Nov; 33(11):1671-9. PubMed ID: 25929691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and validation of a three-dimensional finite element model of the pelvic bone.
    Dalstra M; Huiskes R; van Erning L
    J Biomech Eng; 1995 Aug; 117(3):272-8. PubMed ID: 8618379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.