BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 20655052)

  • 21. Cortical bone finite element models in the estimation of experimentally measured failure loads in the proximal femur.
    Koivumäki JE; Thevenot J; Pulkkinen P; Kuhn V; Link TM; Eckstein F; Jämsä T
    Bone; 2012 Oct; 51(4):737-40. PubMed ID: 22796418
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Skin wound trauma, following high-dose radiation exposure, amplifies and prolongs skeletal tissue loss.
    Swift JM; Swift SN; Smith JT; Kiang JG; Allen MR
    Bone; 2015 Dec; 81():487-494. PubMed ID: 26335157
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computer modelling integrated with micro-CT and material testing provides additional insight to evaluate bone treatments: Application to a beta-glycan derived whey protein mice model.
    Sreenivasan D; Tu PT; Dickinson M; Watson M; Blais A; Das R; Cornish J; Fernandez J
    Comput Biol Med; 2016 Jan; 68():9-20. PubMed ID: 26599826
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of damage morphology on cortical bone fragility.
    Diab T; Vashishth D
    Bone; 2005 Jul; 37(1):96-102. PubMed ID: 15897021
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of crack growth in a 3D Voronoi structure: a model for fatigue in low density trabecular bone.
    Makiyama AM; Vajjhala S; Gibson LJ
    J Biomech Eng; 2002 Oct; 124(5):512-20. PubMed ID: 12405593
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of strength and strain of the proximal femur by a CT-based finite element method.
    Bessho M; Ohnishi I; Matsuyama J; Matsumoto T; Imai K; Nakamura K
    J Biomech; 2007; 40(8):1745-53. PubMed ID: 17034798
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Radiation effects on bone architecture in mice and rats resulting from in vivo micro-computed tomography scanning.
    Klinck RJ; Campbell GM; Boyd SK
    Med Eng Phys; 2008 Sep; 30(7):888-95. PubMed ID: 18249025
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of fabric in the large strain compressive behavior of human trabecular bone.
    Charlebois M; Pretterklieber M; Zysset PK
    J Biomech Eng; 2010 Dec; 132(12):121006. PubMed ID: 21142320
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulating the Lunar Environment: Partial Weightbearing and High-LET Radiation-Induce Bone Loss and Increase Sclerostin-Positive Osteocytes.
    Macias BR; Lima F; Swift JM; Shirazi-Fard Y; Greene ES; Allen MR; Fluckey J; Hogan HA; Braby L; Wang S; Bloomfield SA
    Radiat Res; 2016 Sep; 186(3):254-63. PubMed ID: 27538114
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A nonlinear finite element model validation study based on a novel experimental technique for inducing anterior wedge-shape fractures in human vertebral bodies in vitro.
    Dall'Ara E; Schmidt R; Pahr D; Varga P; Chevalier Y; Patsch J; Kainberger F; Zysset P
    J Biomech; 2010 Aug; 43(12):2374-80. PubMed ID: 20462582
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone.
    Vaughan TJ; McCarthy CT; McNamara LM
    J Mech Behav Biomed Mater; 2012 Aug; 12():50-62. PubMed ID: 22659366
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms.
    Asgharpour Z; Zioupos P; Graw M; Peldschus S
    Forensic Sci Int; 2014 Mar; 236():109-16. PubMed ID: 24529781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Relation between the levels of mineral components and mechanical properties of the bones in dogs after a single acute whole-body irradiation].
    Davydova NG
    Kosm Biol Aviakosm Med; 1990; 24(6):51-3. PubMed ID: 2292874
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relative Effects of Radiation-Induced Changes in Bone Mass, Structure, and Tissue Material on Vertebral Strength in a Rat Model.
    Emerzian SR; Wu T; Vaidya R; Tang SY; Abergel RJ; Keaveny TM
    J Bone Miner Res; 2023 Jul; 38(7):1032-1042. PubMed ID: 37191221
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Failure modelling of trabecular bone using a non-linear combined damage and fracture voxel finite element approach.
    Harrison NM; McDonnell P; Mullins L; Wilson N; O'Mahoney D; McHugh PE
    Biomech Model Mechanobiol; 2013 Apr; 12(2):225-41. PubMed ID: 22527367
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long-term loss of osteoclasts and unopposed cortical mineral apposition following limited field irradiation.
    Oest ME; Franken V; Kuchera T; Strauss J; Damron TA
    J Orthop Res; 2015 Mar; 33(3):334-42. PubMed ID: 25408493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Noninvasive assessments of bone strength.
    Bonnick SL
    Curr Opin Endocrinol Diabetes Obes; 2007 Dec; 14(6):451-7. PubMed ID: 17982351
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A 3D damage model for trabecular bone based on fabric tensors.
    Zysset PK; Curnier A
    J Biomech; 1996 Dec; 29(12):1549-58. PubMed ID: 8945653
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single-Limb Irradiation Induces Local and Systemic Bone Loss in a Murine Model.
    Wright LE; Buijs JT; Kim HS; Coats LE; Scheidler AM; John SK; She Y; Murthy S; Ma N; Chin-Sinex HJ; Bellido TM; Bateman TA; Mendonca MS; Mohammad KS; Guise TA
    J Bone Miner Res; 2015 Jul; 30(7):1268-79. PubMed ID: 25588731
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical consequences of different scenarios for simulated bone atrophy and recovery in the distal radius.
    Pistoia W; van Rietbergen B; Rüegsegger P
    Bone; 2003 Dec; 33(6):937-45. PubMed ID: 14678853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.