BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 20655082)

  • 1. Recolonization by heterotrophic bacteria after UV irradiation or ozonation of seawater; a simulation of ballast water treatment.
    Hess-Erga OK; Blomvågnes-Bakke B; Vadstein O
    Water Res; 2010 Oct; 44(18):5439-49. PubMed ID: 20655082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Denaturing gradient gel electrophoresis shows that bacterial communities change with mid-ocean ballast water exchange.
    Tomaru A; Kawachi M; Demura M; Fukuyo Y
    Mar Pollut Bull; 2010 Feb; 60(2):299-302. PubMed ID: 20022346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ozonation of seawater from different locations: formation and decay of total residual oxidant--implications for ballast water treatment.
    Perrins JC; Cooper WJ; van Leeuwen J; Herwig RP
    Mar Pollut Bull; 2006 Sep; 52(9):1023-33. PubMed ID: 16540126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesocosm experiments for evaluating the biological efficacy of ozone treatment of marine ballast water.
    Perrins JC; Cordell JR; Ferm NC; Grocock JL; Herwig RP
    Mar Pollut Bull; 2006 Dec; 52(12):1756-67. PubMed ID: 17046029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ozonation of the marine dinoflagellate alga Amphidinium sp.--implications for ballast water disinfection.
    Oemcke DJ; Hans van Leeuwen J
    Water Res; 2005 Dec; 39(20):5119-25. PubMed ID: 16289281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disinfection potential of ozone, ultraviolet-C and their combination in wash water for the fresh-cut vegetable industry.
    Selma MV; Allende A; López-Gálvez F; Conesa MA; Gil MI
    Food Microbiol; 2008 Sep; 25(6):809-14. PubMed ID: 18620973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ozonation and UV irradiation with direct filtration on disinfection and disinfection by-product precursors in drinking water treatment.
    Amirsardari Y; Yu Q; Willams P
    Environ Technol; 2001 Sep; 22(9):1015-23. PubMed ID: 11816764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of marine heterotrophic bacteria in ballast water by an Electrochemical Advanced Oxidation Process.
    Moreno-Andrés J; Ambauen N; Vadstein O; Hallé C; Acevedo-Merino A; Nebot E; Meyn T
    Water Res; 2018 Sep; 140():377-386. PubMed ID: 29753242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disinfection by-products in ballast water treatment: an evaluation of regulatory data.
    Werschkun B; Sommer Y; Banerji S
    Water Res; 2012 Oct; 46(16):4884-901. PubMed ID: 22818950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation characteristics of ozone and electrolysis process for ballast water treatment using B. subtilis spores as a probe.
    Jung Y; Yoon Y; Hong E; Kwon M; Kang JW
    Mar Pollut Bull; 2013 Jul; 72(1):71-9. PubMed ID: 23711837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of water treatment on the growth potential of Vibrio cholerae and Vibrio parahaemolyticus in seawater.
    Wennberg AC; Tryland I; Østensvik Ø; Secic I; Monshaugen M; Liltved H
    Mar Environ Res; 2013 Feb; 83():10-5. PubMed ID: 23127287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UV disinfection in a model distribution system:; biofilm growth and microbial community.
    Pozos N; Scow K; Wuertz S; Darby J
    Water Res; 2004 Jul; 38(13):3083-91. PubMed ID: 15261547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes of microbial populations in a ship's ballast water and sediments on a voyage from Japan to Qatar.
    Mimura H; Katakura R; Ishida H
    Mar Pollut Bull; 2005 Jul; 50(7):751-7. PubMed ID: 15993142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shipboard trials of an ozone-based ballast water treatment system.
    Wright DA; Gensemer RW; Mitchelmore CL; Stubblefield WA; van Genderen E; Dawson R; Orano-Dawson CE; Bearr JS; Mueller RA; Cooper WJ
    Mar Pollut Bull; 2010 Sep; 60(9):1571-83. PubMed ID: 20483433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological controls on bacterial populations in ballast water during ocean transit.
    Seiden JM; Rivkin RB
    Mar Pollut Bull; 2014 Jan; 78(1-2):7-14. PubMed ID: 24246652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of Amphidinium sp. in ballast waters using UV/Ag-TiO2+O3 advanced oxidation treatment.
    Wu D; You H; Zhang R; Chen C; Lee DJ
    Bioresour Technol; 2011 Nov; 102(21):9838-42. PubMed ID: 21890347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microorganisms in ballast water: Disinfection, community dynamics, and implications for management.
    Hess-Erga OK; Moreno-Andrés J; Enger Ø; Vadstein O
    Sci Total Environ; 2019 Mar; 657():704-716. PubMed ID: 30677936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of six different ballast water treatment systems based on UV radiation, electrochlorination and chlorine dioxide.
    Stehouwer PP; Buma A; Peperzak L
    Environ Technol; 2015; 36(13-16):2094-104. PubMed ID: 25704551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Results from the first ballast water sampling study in the Mediterranean Sea - the Port of Koper study.
    David M; Gollasch S; Cabrini M; Perkovic M; Bosnjak D; Virgilio D
    Mar Pollut Bull; 2007 Jan; 54(1):53-65. PubMed ID: 17049948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implications of sequential use of UV and ozone for drinking water quality.
    Meunier L; Canonica S; von Gunten U
    Water Res; 2006 May; 40(9):1864-76. PubMed ID: 16635504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.