These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 20655190)

  • 61. Environmental impact of pyrolysis of mixed WEEE plastics part 1: Experimental pyrolysis data.
    Alston SM; Clark AD; Arnold JC; Stein BK
    Environ Sci Technol; 2011 Nov; 45(21):9380-5. PubMed ID: 21939226
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Preparation of liquid chemical feedstocks by co-pyrolysis of electronic waste and biomass without formation of polybrominated dibenzo-p-dioxins.
    Liu WJ; Tian K; Jiang H; Zhang XS; Yang GX
    Bioresour Technol; 2013 Jan; 128():1-7. PubMed ID: 23196214
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste.
    Adrados A; de Marco I; Caballero BM; López A; Laresgoiti MF; Torres A
    Waste Manag; 2012 May; 32(5):826-32. PubMed ID: 21795037
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Thermal decomposition of expanded polystyrene in a pebble bed reactor to get higher liquid fraction yield at low temperatures.
    Chauhan RS; Gopinath S; Razdan P; Delattre C; Nirmala GS; Natarajan R
    Waste Manag; 2008 Nov; 28(11):2140-5. PubMed ID: 18032014
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Removing inorganics from nonmetal fraction of waste printed circuit boards by triboelectric separation.
    Zhang G; Wang H; Zhang T; Yang X; Xie W; He Y
    Waste Manag; 2016 Mar; 49():230-237. PubMed ID: 26777553
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Disposing and recycling waste printed circuit boards: disconnecting, resource recovery, and pollution control.
    Wang J; Xu Z
    Environ Sci Technol; 2015 Jan; 49(2):721-33. PubMed ID: 25525865
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Energy recovery from waste printed circuit boards using microwave pyrolysis: product characteristics, reaction kinetics, and benefits.
    Huang YF; Lo SL
    Environ Sci Pollut Res Int; 2020 Dec; 27(34):43274-43282. PubMed ID: 32734544
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Characteristics of gas and residues produced from electric arc pyrolysis of waste lubricating oil.
    Song GJ; Seo YC; Pudasainee D; Kim IT
    Waste Manag; 2010 Jul; 30(7):1230-7. PubMed ID: 19897349
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The reuse of nonmetals recycled from waste printed circuit boards as reinforcing fillers in the polypropylene composites.
    Zheng Y; Shen Z; Cai C; Ma S; Xing Y
    J Hazard Mater; 2009 Apr; 163(2-3):600-6. PubMed ID: 18691811
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Characterization of char derived from various types of solid wastes from the standpoint of fuel recovery and pretreatment before landfilling.
    Hwang IH; Matsuto T; Tanaka N; Sasaki Y; Tanaami K
    Waste Manag; 2007; 27(9):1155-66. PubMed ID: 16920347
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Research on the pyrolysis characteristics and mechanisms of waste printed circuit boards at fast and slow heating rates.
    Cao R; Zhou R; Liu Y; Ma D; Wang J; Guan Y; Yao Q; Sun M
    Waste Manag; 2022 Jul; 149():134-145. PubMed ID: 35728477
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Recycling of automobile shredder residue with a microwave pyrolysis combined with high temperature steam gasification.
    Donaj P; Yang W; Błasiak W; Forsgren C
    J Hazard Mater; 2010 Oct; 182(1-3):80-9. PubMed ID: 20580160
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Glass-ceramics from vitrified sewage sludge pyrolysis residues and recycled glasses.
    Bernardo E; Dal Maschio R
    Waste Manag; 2011 Nov; 31(11):2245-52. PubMed ID: 21802272
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Quadratic nonlinear models for optimizing electrostatic separation of crushed waste printed circuit boards using response surface methodology.
    Qin Y; Wu J; Zhou Q; Xu Z
    J Hazard Mater; 2009 Aug; 167(1-3):1038-43. PubMed ID: 19250745
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Microwave-assisted chemical recovery of glass fiber and epoxy resin from non-metallic components in waste printed circuit boards.
    Huang K; Zheng J; Yuan W; Wang X; Song Q; Li Y; Crittenden JC; Wang L; Wang J
    Waste Manag; 2021 Apr; 124():8-16. PubMed ID: 33592321
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Study of the transference rules for bromine in waste printed circuit boards during microwave-induced pyrolysis.
    Sun J; Wang W; Liu Z; Ma C
    J Air Waste Manag Assoc; 2011 May; 61(5):535-42. PubMed ID: 21608493
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Hydrothermal recycling of waste and performance of the recycled wooden particleboards.
    Lykidis C; Grigoriou A
    Waste Manag; 2008; 28(1):57-63. PubMed ID: 17291743
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Activated carbon from char obtained from vacuum pyrolysis of teak sawdust: pore structure development and characterization.
    Ismadji S; Sudaryanto Y; Hartono SB; Setiawan LE; Ayucitra A
    Bioresour Technol; 2005 Aug; 96(12):1364-9. PubMed ID: 15792584
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Automotive shredder residue (ASR) characterization for a valuable management.
    Morselli L; Santini A; Passarini F; Vassura I
    Waste Manag; 2010 Nov; 30(11):2228-34. PubMed ID: 20566277
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Fast pyrolysis of rice husk: Product yields and compositions.
    Tsai WT; Lee MK; Chang YM
    Bioresour Technol; 2007 Jan; 98(1):22-8. PubMed ID: 16426847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.