These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 20655358)

  • 1. Dynamic-module redundancy confers robustness to the gene regulatory network involved in hair patterning of Arabidopsis epidermis.
    Benítez M; Alvarez-Buylla ER
    Biosystems; 2010 Oct; 102(1):11-5. PubMed ID: 20655358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equivalent genetic regulatory networks in different contexts recover contrasting spatial cell patterns that resemble those in Arabidopsis root and leaf epidermis: a dynamic model.
    Benítez M; Espinosa-Soto C; Padilla-Longoria P; Díaz J; Alvarez-Buylla ER
    Int J Dev Biol; 2007; 51(2):139-55. PubMed ID: 17294365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interlinked nonlinear subnetworks underlie the formation of robust cellular patterns in Arabidopsis epidermis: a dynamic spatial model.
    Benítez M; Espinosa-Soto C; Padilla-Longoria P; Alvarez-Buylla ER
    BMC Syst Biol; 2008 Nov; 2():98. PubMed ID: 19014692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic regulation of root hair development in Arabidopsis thaliana: a network model.
    Mendoza L; Alvarez-Buylla ER
    J Theor Biol; 2000 Jun; 204(3):311-26. PubMed ID: 10816357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stomata patterning on the hypocotyl of Arabidopsis thaliana is controlled by genes involved in the control of root epidermis patterning.
    Berger F; Linstead P; Dolan L; Haseloff J
    Dev Biol; 1998 Feb; 194(2):226-34. PubMed ID: 9501031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilizing patterning in the Drosophila segment polarity network by selecting models in silico.
    Stoll G; Bischofberger M; Rougemont J; Naef F
    Biosystems; 2010 Oct; 102(1):3-10. PubMed ID: 20655356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positional information and mobile transcriptional regulators determine cell pattern in the Arabidopsis root epidermis.
    Dolan L
    J Exp Bot; 2006; 57(1):51-4. PubMed ID: 16317033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vein patterning in growing leaves: axes and polarities.
    Rolland-Lagan AG
    Curr Opin Genet Dev; 2008 Aug; 18(4):348-53. PubMed ID: 18606536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The expression patterns of arabinogalactan-protein AtAGP30 and GLABRA2 reveal a role for abscisic acid in the early stages of root epidermal patterning.
    van Hengel AJ; Barber C; Roberts K
    Plant J; 2004 Jul; 39(1):70-83. PubMed ID: 15200643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dysregulation of cell-to-cell connectivity and stomatal patterning by loss-of-function mutation in Arabidopsis chorus (glucan synthase-like 8).
    Guseman JM; Lee JS; Bogenschutz NL; Peterson KM; Virata RE; Xie B; Kanaoka MM; Hong Z; Torii KU
    Development; 2010 May; 137(10):1731-41. PubMed ID: 20430748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chaotic gene regulatory networks can be robust against mutations and noise.
    Sevim V; Rikvold PA
    J Theor Biol; 2008 Jul; 253(2):323-32. PubMed ID: 18417154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Old dogs, new tricks: regulatory evolution in conserved genetic modules leads to novel morphologies in plants.
    Rosin FM; Kramer EM
    Dev Biol; 2009 Aug; 332(1):25-35. PubMed ID: 19433084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterning of Arabidopsis epidermal cells: epigenetic factors regulate the complex epidermal cell fate pathway.
    Guimil S; Dunand C
    Trends Plant Sci; 2006 Dec; 11(12):601-9. PubMed ID: 17088095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene regulatory network models for plant development.
    Alvarez-Buylla ER; Benítez M; Dávila EB; Chaos A; Espinosa-Soto C; Padilla-Longoria P
    Curr Opin Plant Biol; 2007 Feb; 10(1):83-91. PubMed ID: 17142086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering early development of complex diseases by progressive module network.
    Zeng T; Zhang CC; Zhang W; Liu R; Liu J; Chen L
    Methods; 2014 Jun; 67(3):334-43. PubMed ID: 24561825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creating a two-dimensional pattern de novo during Arabidopsis trichome and root hair initiation.
    Pesch M; Hülskamp M
    Curr Opin Genet Dev; 2004 Aug; 14(4):422-7. PubMed ID: 15261659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The bHLH genes GL3 and EGL3 participate in an intercellular regulatory circuit that controls cell patterning in the Arabidopsis root epidermis.
    Bernhardt C; Zhao M; Gonzalez A; Lloyd A; Schiefelbein J
    Development; 2005 Jan; 132(2):291-8. PubMed ID: 15590742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene regulatory network models for floral organ determination.
    Azpeitia E; Davila-Velderrain J; Villarreal C; Alvarez-Buylla ER
    Methods Mol Biol; 2014; 1110():441-69. PubMed ID: 24395275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Common regulatory networks in leaf and fruit patterning revealed by mutations in the Arabidopsis ASYMMETRIC LEAVES1 gene.
    Alonso-Cantabrana H; Ripoll JJ; Ochando I; Vera A; Ferrándiz C; Martínez-Laborda A
    Development; 2007 Jul; 134(14):2663-71. PubMed ID: 17592013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cellular mechanism for multi-robot construction via evolutionary multi-objective optimization of a gene regulatory network.
    Guo H; Meng Y; Jin Y
    Biosystems; 2009 Dec; 98(3):193-203. PubMed ID: 19446001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.