These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 20655536)

  • 1. The role of interfragmentary strain on the rate of bone healing-a new interpretation and mathematical model.
    Comiskey DP; Macdonald BJ; McCartney WT; Synnott K; O'Byrne J
    J Biomech; 2010 Oct; 43(14):2830-4. PubMed ID: 20655536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The initial phase of fracture healing is specifically sensitive to mechanical conditions.
    Klein P; Schell H; Streitparth F; Heller M; Kassi JP; Kandziora F; Bragulla H; Haas NP; Duda GN
    J Orthop Res; 2003 Jul; 21(4):662-9. PubMed ID: 12798066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the external formation of a bone fracture callus: an optimisation approach.
    Comiskey DP; MacDonald BJ; McCartney WT; Synnott K; O'Byrne J
    Comput Methods Biomech Biomed Engin; 2012; 15(7):779-85. PubMed ID: 21614706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are bone turnover markers capable of predicting callus consolidation during bone healing?
    Klein P; Bail HJ; Schell H; Michel R; Amthauer H; Bragulla H; Duda GN
    Calcif Tissue Int; 2004 Jul; 75(1):40-9. PubMed ID: 15148561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the frequency of the external mechanical stimulus on bone healing: a computational study.
    González-Torres LA; Gómez-Benito MJ; Doblaré M; García-Aznar JM
    Med Eng Phys; 2010 May; 32(4):363-71. PubMed ID: 20202885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of osteogenic index, octahedral shear stress and dilatational stress in the ossification of a fracture callus.
    Gardner TN; Mishra S; Marks L
    Med Eng Phys; 2004 Jul; 26(6):493-501. PubMed ID: 15234685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear does not necessarily inhibit bone healing.
    Bishop NE; van Rhijn M; Tami I; Corveleijn R; Schneider E; Ito K
    Clin Orthop Relat Res; 2006 Feb; 443():307-14. PubMed ID: 16462456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational simulation of fracture healing: influence of interfragmentary movement on the callus growth.
    García-Aznar JM; Kuiper JH; Gómez-Benito MJ; Doblaré M; Richardson JB
    J Biomech; 2007; 40(7):1467-76. PubMed ID: 16930609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical conditions in the initial phase of bone healing.
    Epari DR; Taylor WR; Heller MO; Duda GN
    Clin Biomech (Bristol, Avon); 2006 Jul; 21(6):646-55. PubMed ID: 16513229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of the time course of callus stiffness as a function of mechanical parameters in experimental rat fracture healing studies--a numerical study.
    Wehner T; Steiner M; Ignatius A; Claes L
    PLoS One; 2014; 9(12):e115695. PubMed ID: 25532060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure, oxygen tension and temperature in the periosteal callus during bone healing--an in vivo study in sheep.
    Epari DR; Lienau J; Schell H; Witt F; Duda GN
    Bone; 2008 Oct; 43(4):734-9. PubMed ID: 18634913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of interfragmentary strain in fracture healing: ovine model of a healing osteotomy.
    Cheal EJ; Mansmann KA; DiGioia AM; Hayes WC; Perren SM
    J Orthop Res; 1991 Jan; 9(1):131-42. PubMed ID: 1984043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of monitoring long-bone fracture healing by measurement of either bone stiffness or resonant frequency: numerical simulation.
    Roberts SG; Steele CR
    J Orthop Res; 2000 Sep; 18(5):691-7. PubMed ID: 11117288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain rate and timing of stimulation in mechanical modulation of fracture healing.
    Goodship AE; Cunningham JL; Kenwright J
    Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S105-15. PubMed ID: 9917631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanical heterogeneity of the hard callus influences local tissue strains during bone healing: a finite element study based on sheep experiments.
    Vetter A; Liu Y; Witt F; Manjubala I; Sander O; Epari DR; Fratzl P; Duda GN; Weinkamer R
    J Biomech; 2011 Feb; 44(3):517-23. PubMed ID: 20965507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of mechanical stability on fracture healing--an update.
    Jagodzinski M; Krettek C
    Injury; 2007 Mar; 38 Suppl 1():S3-10. PubMed ID: 17383483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel model to study metaphyseal bone healing under defined biomechanical conditions.
    Claes L; Veeser A; Göckelmann M; Simon U; Ignatius A
    Arch Orthop Trauma Surg; 2009 Jul; 129(7):923-8. PubMed ID: 18654792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 3D computational simulation of fracture callus formation: influence of the stiffness of the external fixator.
    Gómez-Benito MJ; García-Aznar JM; Kuiper JH; Doblaré M
    J Biomech Eng; 2006 Jun; 128(3):290-9. PubMed ID: 16706578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of size and stability of the osteotomy gap on the success of fracture healing.
    Claes L; Augat P; Suger G; Wilke HJ
    J Orthop Res; 1997 Jul; 15(4):577-84. PubMed ID: 9379268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gait evaluation: a tool to monitor bone healing?
    Seebeck P; Thompson MS; Parwani A; Taylor WR; Schell H; Duda GN
    Clin Biomech (Bristol, Avon); 2005 Nov; 20(9):883-91. PubMed ID: 16009475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.