These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 20655851)

  • 1. Driving forces for transmembrane alpha-helix oligomerization.
    Sodt AJ; Head-Gordon T
    Biophys J; 2010 Jul; 99(1):227-37. PubMed ID: 20655851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Position-dependence of stabilizing polar interactions of asparagine in transmembrane helical bundles.
    Lear JD; Gratkowski H; Adamian L; Liang J; DeGrado WF
    Biochemistry; 2003 Jun; 42(21):6400-7. PubMed ID: 12767221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Helix-helix packing and interfacial pairwise interactions of residues in membrane proteins.
    Adamian L; Liang J
    J Mol Biol; 2001 Aug; 311(4):891-907. PubMed ID: 11518538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel scoring function for predicting the conformations of tightly packed pairs of transmembrane alpha-helices.
    Fleishman SJ; Ben-Tal N
    J Mol Biol; 2002 Aug; 321(2):363-78. PubMed ID: 12144792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polar/Ionizable residues in transmembrane segments: effects on helix-helix packing.
    Bañó-Polo M; Baeza-Delgado C; Orzáez M; Marti-Renom MA; Abad C; Mingarro I
    PLoS One; 2012; 7(9):e44263. PubMed ID: 22984481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the distribution of amino acid residues in transmembrane alpha-helix bundles.
    Samatey FA; Xu C; Popot JL
    Proc Natl Acad Sci U S A; 1995 May; 92(10):4577-81. PubMed ID: 7753846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Higher-order interhelical spatial interactions in membrane proteins.
    Adamian L; Jackups R; Binkowski TA; Liang J
    J Mol Biol; 2003 Mar; 327(1):251-72. PubMed ID: 12614623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo selection of heterotypically interacting transmembrane helices: Complementary helix surfaces, rather than conserved interaction motifs, drive formation of transmembrane hetero-dimers.
    Steindorf D; Schneider D
    Biochim Biophys Acta Biomembr; 2017 Feb; 1859(2):245-256. PubMed ID: 27915045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-based statistical analysis of transmembrane helices.
    Baeza-Delgado C; Marti-Renom MA; Mingarro I
    Eur Biophys J; 2013 Mar; 42(2-3):199-207. PubMed ID: 22588483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions.
    Senes A; Gerstein M; Engelman DM
    J Mol Biol; 2000 Feb; 296(3):921-36. PubMed ID: 10677292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophobic helical hairpins: design and packing interactions in membrane environments.
    Johnson RM; Heslop CL; Deber CM
    Biochemistry; 2004 Nov; 43(45):14361-9. PubMed ID: 15533040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Canonical azimuthal rotations and flanking residues constrain the orientation of transmembrane helices.
    Sánchez-Muñoz OL; Strandberg E; Esteban-Martín E; Grage SL; Ulrich AS; Salgado J
    Biophys J; 2013 Apr; 104(7):1508-16. PubMed ID: 23561527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motifs of serine and threonine can drive association of transmembrane helices.
    Dawson JP; Weinger JS; Engelman DM
    J Mol Biol; 2002 Feb; 316(3):799-805. PubMed ID: 11866532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and computational studies of determinants of membrane-protein folding.
    Liang J
    Curr Opin Chem Biol; 2002 Dec; 6(6):878-84. PubMed ID: 12470745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interhelical hydrogen bonds and spatial motifs in membrane proteins: polar clamps and serine zippers.
    Adamian L; Liang J
    Proteins; 2002 May; 47(2):209-18. PubMed ID: 11933067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revisiting hydrophobic mismatch with free energy simulation studies of transmembrane helix tilt and rotation.
    Kim T; Im W
    Biophys J; 2010 Jul; 99(1):175-83. PubMed ID: 20655845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic interactions promote transmembrane helix-helix association depending on sequence context.
    Herrmann JR; Fuchs A; Panitz JC; Eckert T; Unterreitmeier S; Frishman D; Langosch D
    J Mol Biol; 2010 Feb; 396(2):452-61. PubMed ID: 19961858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR-based approach to measure the free energy of transmembrane helix-helix interactions.
    Mineev KS; Lesovoy DM; Usmanova DR; Goncharuk SA; Shulepko MA; Lyukmanova EN; Kirpichnikov MP; Bocharov EV; Arseniev AS
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):164-72. PubMed ID: 24036227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence context strongly modulates association of polar residues in transmembrane helices.
    Dawson JP; Melnyk RA; Deber CM; Engelman DM
    J Mol Biol; 2003 Aug; 331(1):255-62. PubMed ID: 12875850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletion of a terminal residue disrupts oligomerization of a transmembrane alpha-helix.
    Ng DP; Deber CM
    Biochem Cell Biol; 2010 Apr; 88(2):339-45. PubMed ID: 20453934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.