BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 20656352)

  • 1. Laminar and prelaminar tissue displacement during intraocular pressure elevation in glaucoma patients and healthy controls.
    Agoumi Y; Sharpe GP; Hutchison DM; Nicolela MT; Artes PH; Chauhan BC
    Ophthalmology; 2011 Jan; 118(1):52-9. PubMed ID: 20656352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vivo Three-Dimensional Lamina Cribrosa Strains in Healthy, Ocular Hypertensive, and Glaucoma Eyes Following Acute Intraocular Pressure Elevation.
    Beotra MR; Wang X; Tun TA; Zhang L; Baskaran M; Aung T; Strouthidis NG; Girard MJA
    Invest Ophthalmol Vis Sci; 2018 Jan; 59(1):260-272. PubMed ID: 29340640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laminar displacement and prelaminar tissue thickness change after glaucoma surgery imaged with optical coherence tomography.
    Reis AS; O'Leary N; Stanfield MJ; Shuba LM; Nicolela MT; Chauhan BC
    Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5819-26. PubMed ID: 22807291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversal of lamina cribrosa displacement and thickness after trabeculectomy in glaucoma.
    Lee EJ; Kim TW; Weinreb RN
    Ophthalmology; 2012 Jul; 119(7):1359-66. PubMed ID: 22464141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corneal hysteresis but not corneal thickness correlates with optic nerve surface compliance in glaucoma patients.
    Wells AP; Garway-Heath DF; Poostchi A; Wong T; Chan KC; Sachdev N
    Invest Ophthalmol Vis Sci; 2008 Aug; 49(8):3262-8. PubMed ID: 18316697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of acutely elevated intraocular pressure on the porcine optic nerve head.
    Fatehee N; Yu PK; Morgan WH; Cringle SJ; Yu DY
    Invest Ophthalmol Vis Sci; 2011 Aug; 52(9):6192-8. PubMed ID: 21715357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optic disc diameter increases during acute elevations of intraocular pressure.
    Poostchi A; Wong T; Chan KC; Kedzlie L; Sachdev N; Nicholas S; Garway-Heath DF; Wells AP
    Invest Ophthalmol Vis Sci; 2010 May; 51(5):2313-6. PubMed ID: 19907027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between intraocular pressure level and optic disc changes in high-tension glaucoma suspects.
    Tanito M; Itai N; Dong J; Ohira A; Chihara E
    Ophthalmology; 2003 May; 110(5):915-21. PubMed ID: 12750089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The association between diurnal variation of optic nerve head topography and intraocular pressure and ocular perfusion pressure in untreated primary open-angle glaucoma.
    Sehi M; Flanagan JG; Zeng L; Cook RJ; Trope GE
    J Glaucoma; 2011 Jan; 20(1):44-50. PubMed ID: 20436368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional high-speed optical coherence tomography imaging of lamina cribrosa in glaucoma.
    Inoue R; Hangai M; Kotera Y; Nakanishi H; Mori S; Morishita S; Yoshimura N
    Ophthalmology; 2009 Feb; 116(2):214-22. PubMed ID: 19091413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-function relationships in normal and glaucomatous eyes determined by time- and spectral-domain optical coherence tomography.
    Lee JR; Jeoung JW; Choi J; Choi JY; Park KH; Kim YD
    Invest Ophthalmol Vis Sci; 2010 Dec; 51(12):6424-30. PubMed ID: 20592233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversal of lamina cribrosa displacement after intraocular pressure reduction in open-angle glaucoma.
    Lee EJ; Kim TW; Weinreb RN; Kim H
    Ophthalmology; 2013 Mar; 120(3):553-559. PubMed ID: 23218823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of elevated intraocular pressure on the thickness changes of cat laminar and prelaminar tissue using optical coherence tomography.
    Zhao Q; Qian X; Li L; Sun W; Huang S; Liu Z
    Biomed Mater Eng; 2014; 24(6):2349-60. PubMed ID: 25226935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of moderate changes in intraocular pressure on ocular hemodynamics in patients with primary open-angle glaucoma and healthy controls.
    Weigert G; Findl O; Luksch A; Rainer G; Kiss B; Vass C; Schmetterer L
    Ophthalmology; 2005 Aug; 112(8):1337-42. PubMed ID: 16024084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How does lowering of intraocular pressure protect the optic nerve?
    Mackenzie P; Cioffi G
    Surv Ophthalmol; 2008 Nov; 53 Suppl1():S39-43. PubMed ID: 19038623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Vivo Measurements of Prelamina and Lamina Cribrosa Biomechanical Properties in Humans.
    Zhang L; Beotra MR; Baskaran M; Tun TA; Wang X; Perera SA; Strouthidis NG; Aung T; Boote C; Girard MJA
    Invest Ophthalmol Vis Sci; 2020 Mar; 61(3):27. PubMed ID: 32186670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Are there genuine and pseudo-normal pressure glaucomas? Body position-dependent intraocular pressure values in normal pressure glaucoma].
    Mardin CY; Jonas J; Michelson G; Jünemann A
    Klin Monbl Augenheilkd; 1997 Oct; 211(4):235-40. PubMed ID: 9445910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Relation of the size of the optic disk excavation to the hemodynamic level of the eye in persons with elevated ocular tension].
    Basinskiĭ SN; Listopadova NA
    Vestn Oftalmol; 1985; 101(1):3-5. PubMed ID: 3994791
    [No Abstract]   [Full Text] [Related]  

  • 19. Electrophysiological evidence of early functional damage in glaucoma and ocular hypertension.
    North RV; Jones AL; Drasdo N; Wild JM; Morgan JE
    Invest Ophthalmol Vis Sci; 2010 Feb; 51(2):1216-22. PubMed ID: 19850843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between corneal hysteresis and lamina cribrosa displacement after medical reduction of intraocular pressure.
    Lanzagorta-Aresti A; Perez-Lopez M; Palacios-Pozo E; Davo-Cabrera J
    Br J Ophthalmol; 2017 Mar; 101(3):290-294. PubMed ID: 27474156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.