BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 20656697)

  • 1. Laminar analysis of slow wave activity in humans.
    Csercsa R; Dombovári B; Fabó D; Wittner L; Eross L; Entz L; Sólyom A; Rásonyi G; Szucs A; Kelemen A; Jakus R; Juhos V; Grand L; Magony A; Halász P; Freund TF; Maglóczky Z; Cash SS; Papp L; Karmos G; Halgren E; Ulbert I
    Brain; 2010 Sep; 133(9):2814-29. PubMed ID: 20656697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks.
    Steriade M; Contreras D; Curró Dossi R; Nuñez A
    J Neurosci; 1993 Aug; 13(8):3284-99. PubMed ID: 8340808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram.
    Steriade M; Nuñez A; Amzica F
    J Neurosci; 1993 Aug; 13(8):3266-83. PubMed ID: 8340807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneous neuronal firing patterns during interictal epileptiform discharges in the human cortex.
    Keller CJ; Truccolo W; Gale JT; Eskandar E; Thesen T; Carlson C; Devinsky O; Kuzniecky R; Doyle WK; Madsen JR; Schomer DL; Mehta AD; Brown EN; Hochberg LR; Ulbert I; Halgren E; Cash SS
    Brain; 2010 Jun; 133(Pt 6):1668-81. PubMed ID: 20511283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fine-scale mapping of cortical laminar activity during sleep slow oscillations using high-density linear silicon probes.
    Fiáth R; Raducanu BC; Musa S; Andrei A; Lopez CM; Welkenhuysen M; Ruther P; Aarts A; Ulbert I
    J Neurosci Methods; 2019 Mar; 316():58-70. PubMed ID: 30144495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential Neural Activity in Primary Motor Cortex during Sleep.
    Xu W; de Carvalho F; Jackson A
    J Neurosci; 2019 May; 39(19):3698-3712. PubMed ID: 30842250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous high-frequency (10-80 Hz) oscillations during up states in the cerebral cortex in vitro.
    Compte A; Reig R; Descalzo VF; Harvey MA; Puccini GD; Sanchez-Vives MV
    J Neurosci; 2008 Dec; 28(51):13828-44. PubMed ID: 19091973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal Structure of Neuronal Activity among Cortical Neuron Subtypes during Slow Oscillations in Anesthetized Rats.
    Ushimaru M; Kawaguchi Y
    J Neurosci; 2015 Aug; 35(34):11988-2001. PubMed ID: 26311779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic Mechanisms of Memory Consolidation during Sleep Slow Oscillations.
    Wei Y; Krishnan GP; Bazhenov M
    J Neurosci; 2016 Apr; 36(15):4231-47. PubMed ID: 27076422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronization of fast (30-40 Hz) spontaneous cortical rhythms during brain activation.
    Steriade M; Amzica F; Contreras D
    J Neurosci; 1996 Jan; 16(1):392-417. PubMed ID: 8613806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves.
    Frauscher B; von Ellenrieder N; Ferrari-Marinho T; Avoli M; Dubeau F; Gotman J
    Brain; 2015 Jun; 138(Pt 6):1629-41. PubMed ID: 25792528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of learning on sleep slow oscillations and associated spindles and ripples in humans and rats.
    Mölle M; Eschenko O; Gais S; Sara SJ; Born J
    Eur J Neurosci; 2009 Mar; 29(5):1071-81. PubMed ID: 19245368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiology, pharmacology, and topography of cholinergic neocortical oscillations in vitro.
    Lukatch HS; MacIver MB
    J Neurophysiol; 1997 May; 77(5):2427-45. PubMed ID: 9163368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sleep spindles in humans: insights from intracranial EEG and unit recordings.
    Andrillon T; Nir Y; Staba RJ; Ferrarelli F; Cirelli C; Tononi G; Fried I
    J Neurosci; 2011 Dec; 31(49):17821-34. PubMed ID: 22159098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous slow wave oscillations in extracellular field potential recordings reflect the alternating dominance of excitation and inhibition.
    Zheng Y; Kang S; O'Neill J; Bojak I
    J Physiol; 2024 Feb; 602(4):713-736. PubMed ID: 38294945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep states differentiate single neuron activity recorded from human epileptic hippocampus, entorhinal cortex, and subiculum.
    Staba RJ; Wilson CL; Bragin A; Fried I; Engel J
    J Neurosci; 2002 Jul; 22(13):5694-704. PubMed ID: 12097521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships.
    Contreras D; Steriade M
    J Neurosci; 1995 Jan; 15(1 Pt 2):604-22. PubMed ID: 7823167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New class of reduced computationally efficient neuronal models for large-scale simulations of brain dynamics.
    Komarov M; Krishnan G; Chauvette S; Rulkov N; Timofeev I; Bazhenov M
    J Comput Neurosci; 2018 Feb; 44(1):1-24. PubMed ID: 29230640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states.
    Destexhe A; Contreras D; Steriade M
    J Neurosci; 1999 Jun; 19(11):4595-608. PubMed ID: 10341257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laminar Profile and Physiology of the α Rhythm in Primary Visual, Auditory, and Somatosensory Regions of Neocortex.
    Haegens S; Barczak A; Musacchia G; Lipton ML; Mehta AD; Lakatos P; Schroeder CE
    J Neurosci; 2015 Oct; 35(42):14341-52. PubMed ID: 26490871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.