BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 20656779)

  • 1. Transcriptional analysis of differential carbohydrate utilization by Clostridium acetobutylicum.
    Servinsky MD; Kiel JT; Dupuy NF; Sund CJ
    Microbiology (Reading); 2010 Nov; 156(Pt 11):3478-3491. PubMed ID: 20656779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global transcriptional analysis of Streptococcus mutans sugar transporters using microarrays.
    Ajdić D; Pham VT
    J Bacteriol; 2007 Jul; 189(14):5049-59. PubMed ID: 17496079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the mechanism and regulation of lactose transport and metabolism in Clostridium acetobutylicum ATCC 824.
    Yu Y; Tangney M; Aass HC; Mitchell WJ
    Appl Environ Microbiol; 2007 Mar; 73(6):1842-50. PubMed ID: 17209069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of PTS(Fru) as the major fructose uptake system of Clostridium acetobutylicum.
    Voigt C; Bahl H; Fischer RJ
    Appl Microbiol Biotechnol; 2014 Aug; 98(16):7161-72. PubMed ID: 24841119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays.
    Barrangou R; Azcarate-Peril MA; Duong T; Conners SB; Kelly RM; Klaenhammer TR
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3816-21. PubMed ID: 16505367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alleviation of Carbon Catabolite Repression through
    Delarouzée A; Lopes Ferreira N; Wasels F
    Appl Environ Microbiol; 2023 Mar; 89(3):e0213522. PubMed ID: 36779716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elimination of carbon catabolite repression in Clostridium acetobutylicum--a journey toward simultaneous use of xylose and glucose.
    Bruder M; Moo-Young M; Chung DA; Chou CP
    Appl Microbiol Biotechnol; 2015 Sep; 99(18):7579-88. PubMed ID: 25981995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional analysis of micronutrient zinc-associated response for enhanced carbohydrate utilization and earlier solventogenesis in Clostridium acetobutylicum.
    Wu YD; Xue C; Chen LJ; Wan HH; Bai FW
    Sci Rep; 2015 Nov; 5():16598. PubMed ID: 26586044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional analysis of catabolite repression in Clostridium acetobutylicum growing on mixtures of D-glucose and D-xylose.
    Grimmler C; Held C; Liebl W; Ehrenreich A
    J Biotechnol; 2010 Nov; 150(3):315-23. PubMed ID: 20883732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PTS regulation domain-containing transcriptional activator CelR and sigma factor σ(54) control cellobiose utilization in Clostridium acetobutylicum.
    Nie X; Yang B; Zhang L; Gu Y; Yang S; Jiang W; Yang C
    Mol Microbiol; 2016 Apr; 100(2):289-302. PubMed ID: 26691835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arabinose-Induced Catabolite Repression as a Mechanism for Pentose Hierarchy Control in
    Servinsky MD; Renberg RL; Perisin MA; Gerlach ES; Liu S; Sund CJ
    mSystems; 2018; 3(5):. PubMed ID: 30374459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico and transcriptional analysis of carbohydrate uptake systems of Streptomyces coelicolor A3(2).
    Bertram R; Schlicht M; Mahr K; Nothaft H; Saier MH; Titgemeyer F
    J Bacteriol; 2004 Mar; 186(5):1362-73. PubMed ID: 14973030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Phosphotransferase System in Solventogenic Clostridia.
    Mitchell WJ
    J Mol Microbiol Biotechnol; 2015; 25(2-3):129-42. PubMed ID: 26159074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchy in pentose sugar metabolism in Clostridium acetobutylicum.
    Aristilde L; Lewis IA; Park JO; Rabinowitz JD
    Appl Environ Microbiol; 2015 Feb; 81(4):1452-62. PubMed ID: 25527534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences.
    Vanfossen AL; Verhaart MR; Kengen SM; Kelly RM
    Appl Environ Microbiol; 2009 Dec; 75(24):7718-24. PubMed ID: 19820143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concurrent metabolism of pentose and hexose sugars by the polyextremophile Alicyclobacillus acidocaldarius.
    Lee BD; Apel WA; DeVeaux LC; Sheridan PP
    J Ind Microbiol Biotechnol; 2017 Oct; 44(10):1443-1458. PubMed ID: 28776272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pleiotropic functions of catabolite control protein CcpA in Butanol-producing Clostridium acetobutylicum.
    Ren C; Gu Y; Wu Y; Zhang W; Yang C; Yang S; Jiang W
    BMC Genomics; 2012 Jul; 13():349. PubMed ID: 22846451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfolobus acidocaldarius Transports Pentoses via a Carbohydrate Uptake Transporter 2 (CUT2)-Type ABC Transporter and Metabolizes Them through the Aldolase-Independent Weimberg Pathway.
    Wagner M; Shen L; Albersmeier A; van der Kolk N; Kim S; Cha J; Bräsen C; Kalinowski J; Siebers B; Albers SV
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150511
    [No Abstract]   [Full Text] [Related]  

  • 19. Global microarray analysis of carbohydrate use in alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5.
    Song Y; Xue Y; Ma Y
    PLoS One; 2013; 8(1):e54090. PubMed ID: 23326578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular modulation of pleiotropic regulator CcpA for glucose and xylose coutilization by solvent-producing Clostridium acetobutylicum.
    Wu Y; Yang Y; Ren C; Yang C; Yang S; Gu Y; Jiang W
    Metab Eng; 2015 Mar; 28():169-179. PubMed ID: 25637046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.