BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 20656779)

  • 21. Combined overexpression of genes involved in pentose phosphate pathway enables enhanced D-xylose utilization by Clostridium acetobutylicum.
    Jin L; Zhang H; Chen L; Yang C; Yang S; Jiang W; Gu Y
    J Biotechnol; 2014 Mar; 173():7-9. PubMed ID: 24412407
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ribulokinase and transcriptional regulation of arabinose metabolism in Clostridium acetobutylicum.
    Zhang L; Leyn SA; Gu Y; Jiang W; Rodionov DA; Yang C
    J Bacteriol; 2012 Mar; 194(5):1055-64. PubMed ID: 22194461
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transporters of glucose and other carbohydrates in bacteria.
    Jeckelmann JM; Erni B
    Pflugers Arch; 2020 Sep; 472(9):1129-1153. PubMed ID: 32372286
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular analysis of the mannitol operon of Clostridium acetobutylicum encoding a phosphotransferase system and a putative PTS-modulated regulator.
    Behrens S; Mitchell W; Bahl H
    Microbiology (Reading); 2001 Jan; 147(Pt 1):75-86. PubMed ID: 11160802
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An expression-driven approach to the prediction of carbohydrate transport and utilization regulons in the hyperthermophilic bacterium Thermotoga maritima.
    Conners SB; Montero CI; Comfort DA; Shockley KR; Johnson MR; Chhabra SR; Kelly RM
    J Bacteriol; 2005 Nov; 187(21):7267-82. PubMed ID: 16237010
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enterococcus faecalis Uses a Phosphotransferase System Permease and a Host Colonization-Related ABC Transporter for Maltodextrin Uptake.
    Sauvageot N; Mokhtari A; Joyet P; Budin-Verneuil A; Blancato VS; Repizo GD; Henry C; Pikis A; Thompson J; Magni C; Hartke A; Deutscher J
    J Bacteriol; 2017 May; 199(9):. PubMed ID: 28242718
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolite labelling reveals hierarchies in Clostridium acetobutylicum that selectively channel carbons from sugar mixtures towards biofuel precursors.
    Aristilde L
    Microb Biotechnol; 2017 Jan; 10(1):162-174. PubMed ID: 27878973
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of a maltose transport system in Clostridium acetobutylicum ATCC 824.
    Tangney M; Winters GT; Mitchell WJ
    J Ind Microbiol Biotechnol; 2001 Nov; 27(5):298-306. PubMed ID: 11781805
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hyperthermophilic Thermotoga species differ with respect to specific carbohydrate transporters and glycoside hydrolases.
    Frock AD; Gray SR; Kelly RM
    Appl Environ Microbiol; 2012 Mar; 78(6):1978-86. PubMed ID: 22247137
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A genomic view of sugar transport in Mycobacterium smegmatis and Mycobacterium tuberculosis.
    Titgemeyer F; Amon J; Parche S; Mahfoud M; Bail J; Schlicht M; Rehm N; Hillmann D; Stephan J; Walter B; Burkovski A; Niederweis M
    J Bacteriol; 2007 Aug; 189(16):5903-15. PubMed ID: 17557815
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glucose consumption in carbohydrate mixtures by phosphotransferase-system mutants of Escherichia coli.
    Xia T; Sriram N; Lee SA; Altman R; Urbauer JL; Altman E; Eiteman MA
    Microbiology (Reading); 2017 Jun; 163(6):866-877. PubMed ID: 28640743
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphoketolase flux in Clostridium acetobutylicum during growth on L-arabinose.
    Sund CJ; Liu S; Germane KL; Servinsky MD; Gerlach ES; Hurley MM
    Microbiology (Reading); 2015 Feb; 161(Pt 2):430-440. PubMed ID: 25481877
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptional analysis of prebiotic uptake and catabolism by Lactobacillus acidophilus NCFM.
    Andersen JM; Barrangou R; Hachem MA; Lahtinen SJ; Goh YJ; Svensson B; Klaenhammer TR
    PLoS One; 2012; 7(9):e44409. PubMed ID: 23028535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The PTS transporters of Lactobacillus gasseri ATCC 33323.
    Francl AL; Thongaram T; Miller MJ
    BMC Microbiol; 2010 Mar; 10():77. PubMed ID: 20226062
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterisation of a glucose phosphotransferase system in Clostridium acetobutylicum ATCC 824.
    Tangney M; Mitchell WJ
    Appl Microbiol Biotechnol; 2007 Feb; 74(2):398-405. PubMed ID: 17096120
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sugar transport systems of Bifidobacterium longum NCC2705.
    Parche S; Amon J; Jankovic I; Rezzonico E; Beleut M; Barutçu H; Schendel I; Eddy MP; Burkovski A; Arigoni F; Titgemeyer F
    J Mol Microbiol Biotechnol; 2007; 12(1-2):9-19. PubMed ID: 17183207
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cross Talk among Transporters of the Phosphoenolpyruvate-Dependent Phosphotransferase System in Bacillus subtilis.
    Morabbi Heravi K; Altenbuchner J
    J Bacteriol; 2018 Oct; 200(19):. PubMed ID: 30038046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Xylose transport insensitivity to catabolite inhibition by phosphoenolpyruvate:sugar phosphotransferase system in Tetragenococcus halophila.
    Abe K; Higuchi T; Yamato I
    Biosci Biotechnol Biochem; 1998 Sep; 62(9):1676-83. PubMed ID: 9805368
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbohydrate Transport by Group Translocation: The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System.
    Jeckelmann JM; Erni B
    Subcell Biochem; 2019; 92():223-274. PubMed ID: 31214989
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arabinose is metabolized via a phosphoketolase pathway in Clostridium acetobutylicum ATCC 824.
    Servinsky MD; Germane KL; Liu S; Kiel JT; Clark AM; Shankar J; Sund CJ
    J Ind Microbiol Biotechnol; 2012 Dec; 39(12):1859-67. PubMed ID: 22922942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.