BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 20656797)

  • 1. Changes in growth and cell wall extensibility of maize silks following pollination.
    Kapu NU; Cosgrove DJ
    J Exp Bot; 2010 Sep; 61(14):4097-107. PubMed ID: 20656797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of genes specifically or preferentially expressed in maize silk reveals similarity and diversity in transcript abundance of different dry stigmas.
    Xu XH; Chen H; Sang YL; Wang F; Ma JP; Gao XQ; Zhang XS
    BMC Genomics; 2012 Jul; 13():294. PubMed ID: 22748054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sporophytic control of pollen tube growth and guidance in maize.
    Lausser A; Kliwer I; Srilunchang KO; Dresselhaus T
    J Exp Bot; 2010 Mar; 61(3):673-82. PubMed ID: 19926683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A calcium-dependent protein kinase, ZmCPK32, specifically expressed in maize pollen to regulate pollen tube growth.
    Li J; Li Y; Deng Y; Chen P; Feng F; Chen W; Zhou X; Wang Y
    PLoS One; 2018; 13(5):e0195787. PubMed ID: 29813101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Matrix solubilization and cell wall weakening by β-expansin (group-1 allergen) from maize pollen.
    Tabuchi A; Li LC; Cosgrove DJ
    Plant J; 2011 Nov; 68(3):546-59. PubMed ID: 21749508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic and cellular analysis of cross-incompatibility in Zea mays.
    Lu Y; Kermicle JL; Evans MM
    Plant Reprod; 2014 Mar; 27(1):19-29. PubMed ID: 24193168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pollen-Expressed Leucine-Rich Repeat Extensins Are Essential for Pollen Germination and Growth.
    Wang X; Wang K; Yin G; Liu X; Liu M; Cao N; Duan Y; Gao H; Wang W; Ge W; Wang J; Li R; Guo Y
    Plant Physiol; 2018 Mar; 176(3):1993-2006. PubMed ID: 29269573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two Expansin Genes,
    Liu W; Xu L; Lin H; Cao J
    Genes (Basel); 2021 Feb; 12(2):. PubMed ID: 33578704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethylene synthesis and auxin augmentation in pistil tissues are important for egg cell differentiation after pollination in maize.
    Mól R; Filek M; Machackova I; Matthys-Rochon E
    Plant Cell Physiol; 2004 Oct; 45(10):1396-405. PubMed ID: 15564523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Class B beta-expansins are needed for pollen separation and stigma penetration.
    Valdivia ER; Stephenson AG; Durachko DM; Cosgrove D
    Sex Plant Reprod; 2009 Sep; 22(3):141-52. PubMed ID: 20033435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of feruloyl esterases in maize pollen.
    de O Buanafina MM; Fernanda Buanafina M; Laremore T; Shearer EA; Fescemyer HW
    Planta; 2019 Dec; 250(6):2063-2082. PubMed ID: 31576447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome profiling provides insights into the molecular mechanisms of maize kernel and silk development.
    Li T; Wang Y; Shi Y; Gou X; Yang B; Qu J; Zhang X; Xue J; Xu S
    BMC Genom Data; 2021 Aug; 22(1):28. PubMed ID: 34418952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcript profile analyses of maize silks reveal effective activation of genes involved in microtubule-based movement, ubiquitin-dependent protein degradation, and transport in the pollination process.
    Xu XH; Wang F; Chen H; Sun W; Zhang XS
    PLoS One; 2013; 8(1):e53545. PubMed ID: 23301084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The RALF signaling pathway regulates cell wall integrity during pollen tube growth in maize.
    Zhou LZ; Wang L; Chen X; Ge Z; Mergner J; Li X; Küster B; Längst G; Qu LJ; Dresselhaus T
    Plant Cell; 2024 May; 36(5):1673-1696. PubMed ID: 38142229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth maintenance of the maize primary root at low water potentials involves increases in cell-wall extension properties, expansin activity, and wall susceptibility to expansins.
    Wu Y; Sharp RE; Durachko DM; Cosgrove DJ
    Plant Physiol; 1996 Jul; 111(3):765-72. PubMed ID: 11536740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional evidence for inferred pattern of pollen tube-stigma metabolic coupling during pollination.
    Yue X; Gao XQ; Wang F; Dong Y; Li X; Zhang XS
    PLoS One; 2014; 9(9):e107046. PubMed ID: 25215523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics.
    Fan L; Linker R; Gepstein S; Tanimoto E; Yamamoto R; Neumann PM
    Plant Physiol; 2006 Feb; 140(2):603-12. PubMed ID: 16384904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pollination between maize and teosinte: an important determinant of gene flow in Mexico.
    Baltazar BM; de Jesús Sánchez-Gonzalez J; de la Cruz-Larios L; Schoper JB
    Theor Appl Genet; 2005 Feb; 110(3):519-26. PubMed ID: 15592808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maize pollen coat xylanase facilitates pollen tube penetration into silk during sexual reproduction.
    Suen DF; Huang AH
    J Biol Chem; 2007 Jan; 282(1):625-36. PubMed ID: 17062571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A PECTIN METHYLESTERASE gene at the maize Ga1 locus confers male function in unilateral cross-incompatibility.
    Zhang Z; Zhang B; Chen Z; Zhang D; Zhang H; Wang H; Zhang Y; Cai D; Liu J; Xiao S; Huo Y; Liu J; Zhang L; Wang M; Liu X; Xue Y; Zhao L; Zhou Y; Chen H
    Nat Commun; 2018 Sep; 9(1):3678. PubMed ID: 30202064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.