These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 20657066)
1. A hybrid model for short-term bacillary dysentery prediction in Yichang City, China. Yan W; Xu Y; Yang X; Zhou Y Jpn J Infect Dis; 2010 Jul; 63(4):264-70. PubMed ID: 20657066 [TBL] [Abstract][Full Text] [Related]
2. Climate variations and bacillary dysentery in northern and southern cities of China. Zhang Y; Bi P; Hiller JE; Sun Y; Ryan P J Infect; 2007 Aug; 55(2):194-200. PubMed ID: 17258812 [TBL] [Abstract][Full Text] [Related]
3. Temporal trends analysis of tuberculosis morbidity in mainland China from 1997 to 2025 using a new SARIMA-NARNNX hybrid model. Wang Y; Xu C; Zhang S; Wang Z; Yang L; Zhu Y; Yuan J BMJ Open; 2019 Jul; 9(7):e024409. PubMed ID: 31371283 [TBL] [Abstract][Full Text] [Related]
4. The Use of an Autoregressive Integrated Moving Average Model for Prediction of the Incidence of Dysentery in Jiangsu, China. Wang K; Song W; Li J; Lu W; Yu J; Han X Asia Pac J Public Health; 2016 May; 28(4):336-46. PubMed ID: 27106828 [TBL] [Abstract][Full Text] [Related]
5. A hybrid seasonal prediction model for tuberculosis incidence in China. Cao S; Wang F; Tam W; Tse LA; Kim JH; Liu J; Lu Z BMC Med Inform Decis Mak; 2013 May; 13():56. PubMed ID: 23638635 [TBL] [Abstract][Full Text] [Related]
6. Comparison of autoregressive integrated moving average model and generalised regression neural network model for prediction of haemorrhagic fever with renal syndrome in China: a time-series study. Wang YW; Shen ZZ; Jiang Y BMJ Open; 2019 Jun; 9(6):e025773. PubMed ID: 31209084 [TBL] [Abstract][Full Text] [Related]
7. [Comparison of predictive effect between the single auto regressive integrated moving average (ARIMA) model and the ARIMA-generalized regression neural network (GRNN) combination model on the incidence of scarlet fever]. Zhu Y; Xia JL; Wang J Zhonghua Liu Xing Bing Xue Za Zhi; 2009 Sep; 30(9):964-8. PubMed ID: 20193238 [TBL] [Abstract][Full Text] [Related]
8. Forecasting mortality of road traffic injuries in China using seasonal autoregressive integrated moving average model. Zhang X; Pang Y; Cui M; Stallones L; Xiang H Ann Epidemiol; 2015 Feb; 25(2):101-6. PubMed ID: 25467006 [TBL] [Abstract][Full Text] [Related]
9. Application of a combined model with seasonal autoregressive integrated moving average and support vector regression in forecasting hand-foot-mouth disease incidence in Wuhan, China. Zou JJ; Jiang GF; Xie XX; Huang J; Yang XB Medicine (Baltimore); 2019 Feb; 98(6):e14195. PubMed ID: 30732135 [TBL] [Abstract][Full Text] [Related]
10. Bacillary dysentery and meteorological factors in northeastern China: a historical review based on classification and regression trees. Guan P; Huang D; Guo J; Wang P; Zhou B Jpn J Infect Dis; 2008 Sep; 61(5):356-60. PubMed ID: 18806341 [TBL] [Abstract][Full Text] [Related]
11. Time-series analysis of tuberculosis from 2005 to 2017 in China. Wang H; Tian CW; Wang WM; Luo XM Epidemiol Infect; 2018 Jun; 146(8):935-939. PubMed ID: 29708082 [TBL] [Abstract][Full Text] [Related]
12. Application of a Combined Model with Autoregressive Integrated Moving Average (ARIMA) and Generalized Regression Neural Network (GRNN) in Forecasting Hepatitis Incidence in Heng County, China. Wei W; Jiang J; Liang H; Gao L; Liang B; Huang J; Zang N; Liao Y; Yu J; Lai J; Qin F; Su J; Ye L; Chen H PLoS One; 2016; 11(6):e0156768. PubMed ID: 27258555 [TBL] [Abstract][Full Text] [Related]
13. [Establishing and applying of autoregressive integrated moving average model to predict the incidence rate of dysentery in Shanghai]. Li J; Wu HY; Li YT; Jin HM; Gu BK; Yuan ZA Zhonghua Yu Fang Yi Xue Za Zhi; 2010 Jan; 44(1):48-53. PubMed ID: 20388364 [TBL] [Abstract][Full Text] [Related]
14. Real-time forecasting and early warning of bacillary dysentery activity in four meteorological and geographic divisions in China. Wang S; Liu Z; Tong M; Xiang J; Zhang Y; Gao Q; Zhang Y; Lu L; Jiang B; Bi P Sci Total Environ; 2021 Mar; 761():144093. PubMed ID: 33360132 [TBL] [Abstract][Full Text] [Related]
15. A new hybrid model SARIMA-ETS-SVR for seasonal influenza incidence prediction in mainland China. Zhao D; Zhang R J Infect Dev Ctries; 2023 Nov; 17(11):1581-1590. PubMed ID: 38064398 [TBL] [Abstract][Full Text] [Related]
16. [Temporal-spatial analysis of bacillary dysentery in the Three Gorges Area of China, 2005-2016]. Zhang P; Zhang J; Chang ZR; Li ZJ Zhonghua Liu Xing Bing Xue Za Zhi; 2018 Jan; 39(1):47-53. PubMed ID: 29374895 [No Abstract] [Full Text] [Related]
17. Applying SARIMA, ETS, and hybrid models for prediction of tuberculosis incidence rate in Taiwan. Kuan MM PeerJ; 2022; 10():e13117. PubMed ID: 36164599 [TBL] [Abstract][Full Text] [Related]
18. Projected Years Lost due to Disabilities (YLDs) for bacillary dysentery related to increased temperature in temperate and subtropical cities of China. Zhang Y; Bi P; Sun Y; Hiller JE J Environ Monit; 2012 Feb; 14(2):510-6. PubMed ID: 22130387 [TBL] [Abstract][Full Text] [Related]
19. Prevalence of haemorrhagic fever with renal syndrome in mainland China: analysis of National Surveillance Data, 2004-2009. Liu X; Jiang B; Bi P; Yang W; Liu Q Epidemiol Infect; 2012 May; 140(5):851-7. PubMed ID: 21791148 [TBL] [Abstract][Full Text] [Related]
20. A Hybrid Approach Based on Seasonal Autoregressive Integrated Moving Average and Neural Network Autoregressive Models to Predict Scorpion Sting Incidence in El Oued Province, Algeria, From 2005 to 2020. Zenia S; L'Hadj M; Selmane S J Res Health Sci; 2023 Sep; 23(3):e00586. PubMed ID: 38315901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]