These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 20657066)
21. Weather and the transmission of bacillary dysentery in Jinan, northern China: a time-series analysis. Zhang Y; Bi P; Hiller JE Public Health Rep; 2008; 123(1):61-6. PubMed ID: 18348481 [TBL] [Abstract][Full Text] [Related]
22. Development of a predictive model for ross river virus disease in Brisbane, Australia. Hu W; Nicholls N; Lindsay M; Dale P; McMichael AJ; Mackenzie JS; Tong S Am J Trop Med Hyg; 2004 Aug; 71(2):129-37. PubMed ID: 15306700 [TBL] [Abstract][Full Text] [Related]
23. High mean water vapour pressure promotes the transmission of bacillary dysentery. Li GZ; Shao FF; Zhang H; Zou CP; Li HH; Jin J PLoS One; 2015; 10(5):e0124478. PubMed ID: 25946209 [TBL] [Abstract][Full Text] [Related]
24. Time Series Models for Short Term Prediction of the Incidence of Japanese Encephalitis in Xianyang City, P R China Zhang RQ; Li FY; Liu JL; Liu MN; Luo WR; Ma T; Ma B; Zhang ZG Chin Med Sci J; 2017 Sep; 32(3):152-160. PubMed ID: 28956742 [TBL] [Abstract][Full Text] [Related]
25. Time series modeling of pertussis incidence in China from 2004 to 2018 with a novel wavelet based SARIMA-NAR hybrid model. Wang Y; Xu C; Wang Z; Zhang S; Zhu Y; Yuan J PLoS One; 2018; 13(12):e0208404. PubMed ID: 30586416 [TBL] [Abstract][Full Text] [Related]
26. Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic Fever with Renal Syndrome in Jiangsu Province, China. Wu W; Guo J; An S; Guan P; Ren Y; Xia L; Zhou B PLoS One; 2015; 10(8):e0135492. PubMed ID: 26270814 [TBL] [Abstract][Full Text] [Related]
27. Investigating the effects of climate variations on bacillary dysentery incidence in northeast China using ridge regression and hierarchical cluster analysis. Huang D; Guan P; Guo J; Wang P; Zhou B BMC Infect Dis; 2008 Sep; 8():130. PubMed ID: 18816415 [TBL] [Abstract][Full Text] [Related]
28. Forecast of the trend in incidence of acute hemorrhagic conjunctivitis in China from 2011-2019 using the Seasonal Autoregressive Integrated Moving Average (SARIMA) and Exponential Smoothing (ETS) models. Liu H; Li C; Shao Y; Zhang X; Zhai Z; Wang X; Qi X; Wang J; Hao Y; Wu Q; Jiao M J Infect Public Health; 2020 Feb; 13(2):287-294. PubMed ID: 31953020 [TBL] [Abstract][Full Text] [Related]
29. Seasonality and Trend Forecasting of Tuberculosis Incidence in Chongqing, China. Liao Z; Zhang X; Zhang Y; Peng D Interdiscip Sci; 2019 Mar; 11(1):77-85. PubMed ID: 30734907 [TBL] [Abstract][Full Text] [Related]
30. Time series analysis-based seasonal autoregressive fractionally integrated moving average to estimate hepatitis B and C epidemics in China. Wang YB; Qing SY; Liang ZY; Ma C; Bai YC; Xu CJ World J Gastroenterol; 2023 Nov; 29(42):5716-5727. PubMed ID: 38075851 [TBL] [Abstract][Full Text] [Related]
31. Research on hand, foot and mouth disease incidence forecasting using hybrid model in mainland China. Zhao D; Zhang H; Zhang R; He S BMC Public Health; 2023 Mar; 23(1):619. PubMed ID: 37003988 [TBL] [Abstract][Full Text] [Related]
32. Impact of meteorological factors on the incidence of bacillary dysentery in Beijing, China: A time series analysis (1970-2012). Yan L; Wang H; Zhang X; Li MY; He J PLoS One; 2017; 12(8):e0182937. PubMed ID: 28796834 [TBL] [Abstract][Full Text] [Related]
33. Time series model for forecasting the number of new admission inpatients. Zhou L; Zhao P; Wu D; Cheng C; Huang H BMC Med Inform Decis Mak; 2018 Jun; 18(1):39. PubMed ID: 29907102 [TBL] [Abstract][Full Text] [Related]
34. Meteorological variables and bacillary dysentery cases in Changsha City, China. Gao L; Zhang Y; Ding G; Liu Q; Zhou M; Li X; Jiang B Am J Trop Med Hyg; 2014 Apr; 90(4):697-704. PubMed ID: 24591435 [TBL] [Abstract][Full Text] [Related]
35. Seasonal behavior and forecasting trends of tuberculosis incidence in Holy Kerbala, Iraq. Mohammed SH; Ahmed MM; Al-Mousawi AM; Azeez A Int J Mycobacteriol; 2018; 7(4):361-367. PubMed ID: 30531036 [TBL] [Abstract][Full Text] [Related]
36. Analysis and forecasting of syphilis trends in mainland China based on hybrid time series models. Wang ZD; Yang CX; Zhang SK; Wang YB; Xu Z; Feng ZJ Epidemiol Infect; 2024 May; 152():e93. PubMed ID: 38800855 [TBL] [Abstract][Full Text] [Related]
37. Time series analysis and forecasting of chlamydia trachomatis incidence using surveillance data from 2008 to 2019 in Shenzhen, China. Weng RX; Fu HL; Zhang CL; Ye JB; Hong FC; Chen XS; Cai YM Epidemiol Infect; 2020 Mar; 148():e76. PubMed ID: 32178748 [TBL] [Abstract][Full Text] [Related]
38. The Effects of Floods on the Incidence of Bacillary Dysentery in Baise (Guangxi Province, China) from 2004 to 2012. Liu X; Liu Z; Zhang Y; Jiang B Int J Environ Res Public Health; 2017 Feb; 14(2):. PubMed ID: 28208681 [TBL] [Abstract][Full Text] [Related]
39. Predicting Seasonal Influenza Based on SARIMA Model, in Mainland China from 2005 to 2018. Cong J; Ren M; Xie S; Wang P Int J Environ Res Public Health; 2019 Nov; 16(23):. PubMed ID: 31783697 [TBL] [Abstract][Full Text] [Related]
40. Weather variability and the incidence of cryptosporidiosis: comparison of time series poisson regression and SARIMA models. Hu W; Tong S; Mengersen K; Connell D Ann Epidemiol; 2007 Sep; 17(9):679-88. PubMed ID: 17604645 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]